Journal of Industrial and Engineering Chemistry, Vol.82, 63-70, February, 2020
Improvement of an Al2O3/CuO heterostructure photoelectrode by controlling the Al2O3 precursor concentration
E-mail:
An Al2O3 capping layer was grown on a CuO photoelectrode using microwave-chemical bath deposition. We investigated the effects of the concentration of the Al2O3 precursor solution on the morphological, structural, optical, electrical and photoelectrochemical properties of the Al2O3/CuO heterostructure photoelectrode. XPS analysis confirmed that the CuO was structurally stabilized by the Al2O3 capping layer. In addition, we found that the morphology, (020) XRD peak intensity, (020) XRD peak full width at half maximum, optical energy band gap, flat-band potential and acceptor density values of the Al2O3/CuO heterostructure photoelectrode were strongly dependent on the concentration of the Al2O3 precursor solution. Among the photoelectrodes evaluated in this study, the Al2O3/CuO heterostructure photoelectrode obtained with an Al2O3 precursor concentration of 3 mM had the highest crystallinity, flat-band potential and acceptor density. It also exhibited a photocurrent density of -2.64 mA/cm2 (vs. SCE at -0.55 V) and a photostability of approximately 55%. In contrast, bare CuO had a photocurrent density of -1.8 mA/cm2 (vs. SCE at -0.55 V) and a photostability of 25%. Based on our results, the photocurrent density and photostability of the CuO photoelectrode could be dramatically improved by capping with an Al2O3 layer using a 3 mM precursor concentration.
Keywords:Al2O3/CuO;Heterostructure photoelectrode;Photocurrent density;Photostability;Al2O3 precursor concentration
- Field CB, Campbell JE, Lobell DB, Trends Ecol. Evol., 23, 65 (2008)
- Seguro JV, Lambert TW, J. Wind Eng. Ind. Aerodyn., 85, 75 (2000)
- Gueymard CA, Solar Energy, 76(4), 423 (2004)
- Barbir F, Solar Energy, 78, 661 (2005)
- Ghenciu AF, Curr. Opin. Solid State Mater. Sci., 27, 389 (2002)
- Choudhary TV, Sivadinarayana C, Chusuei CC, Klinghoffer A, Goodman DW, J. Catal., 199(1), 9 (2001)
- Gratzel M, Nature, 414, 338 (2001)
- Khaselev O, Turner JA, Science, 280(5362), 425 (1998)
- Oh HB, Ryu H, Lee WJ, J. Electrochem. Soc., 161(9), H578 (2014)
- Fujishima A, Honda K, Nature, 238, 37 (1972)
- Swierk JR, Regan KP, Jiang RJ, Brudvig GW, Schmuttenmaer CA, ACS Energy Lett., 1, 603 (2016)
- Zhang C, Shao M, Ning F, Xu S, Li Z, Wei M, Evans DG, Duan X, Nano Energy, 12, 231 (2015)
- Hilliard S, Baldinozzi G, Friedrich D, Kressman S, Strub H, Artero V, Laberty-Robert C, Sustain. Energy Fuels, 1, 145 (2017)
- Nakaoka K, Ueyama J, Ogura K, J. Electrochem. Soc., 151(10), C661 (2004)
- Peng Y, Zhang Z, Pham TV, Zhao T, Wu P, J. Appl. Phys., 111, 103708 (2012)
- Koffyberg FP, Benko FA, J. Appl. Phys., 53, 1173 (1982)
- Choi HJ, Kang M, Int. J. Hydrog. Energy, 32(16), 3841 (2007)
- Oh J, Ryu H, Lee WJ, bae JS, Ceram. Int., 44, 89 (2018)
- Emin S, Abdi FF, Fanetti M, peng W, Smith W, Sivula K, Dam B, Valant M, J. Electroanal. Chem., 717-718, 243 (2014)
- Guo X, Diao P, Xu D, Huang S, Yang Y, Jin T, Wu QY, Xiang M, Zhang M, Int. J. Hydrog. Energy, 39(15), 7686 (2014)
- Jamali S, Moshaii A, Appl. Surf. Sci., 419, 269 (2017)
- Kargar A, Jing Y, Kim SJ, Riley CT, Pan X, Wang D, ACS Nano, 7, 11112 (2013)
- Mahadik MA, Subramanian A, Chung HS, Cho M, Jang JS, ChemSusChem, 10, 202 (0201)
- Kim W, Tachikawa T, Monllor-Satoca D, Kim HI, Majima T, Choi W, Energy Environ. Sci., 6, 3732 (2013)
- Formal FL, Tetreault N, Cornuz M, Moethl T, Gratzel M, Suvula K, Chem. Sci., 2, 737 (2011)
- Gui Q, Xu Z, Zhang H, Cheng C, Zhu X, Yin M, Song Y, Lu L, Chen X, Li D, ACS Appl. Mater. Interfaces, 6, 17053 (2014)
- Ha J, Ryu H, Lee W, Bae J, Physica, 95 (2017).
- Deutsch TG, Koval CA, Turner JA, J. Phys. Chem. B, 110(50), 25297 (2006)
- Obaid AS, Hassan Z, Mahdi MA, Bououdina M, Solar Energy, 89, 143 (2013)
- Lee TH, Ryu H, Lee WJ, J. Alloy. Compd., 597, 85 (2014)
- Kercher AK, Nagle DC, Carbon, 41, 15 (2013)
- Ishikawa K, Yoshikawa K, Okada N, Phys. Rev. B, 37, 5852 (1988)
- Maabong K, Machatine AG, Hu Y, Braun A, Nambala FJ, Diale M, Phys. Rev. B: Condens. Matter, 480, 91 (2016)
- Toyoda M, Nanbu Y, Nakazawa Y, Hirano M, Inagaki M, Appl. Catal. B: Environ., 49(4), 227 (2004)
- Hisatomi T, Formal FL, Cornuz M, Brillet J, Tetreault N, Sivula K, Gratzel M, Energy Environ. Sci., 4, 2512 (2011)
- Mageshwari K, Sathyamoorthy R, Mater. Sci. Semicond. Process, 16, 337 (2013)
- Cao M, Wang Y, Guo Y, Guo C, Wang E, Chem. Commun., 1884 (2003)
- Abd-Lefdila M, Diaz R, Bihri H, Ait Aouaj M, Rueda F, Eur. Phys. J. Appl. Phys., 38, 217 (2007)
- Lim YF, Chua CS, Lee CJJ, Chi D, Phys. Chem. Chem. Phys., 16, 25928 (2014)
- Masudy-Panah S, Radhakrishnan K, Tan HR, Yi R, Wong TI, Dalapati GK, Sol. Energy Mater. Sol. Cells, 140, 266 (2015)
- Morales J, Sanchez L, Martin F, Ramos-Barrado J, Sanchez M, Thin Solid Films, 474(1-2), 133 (2005)
- Fan Z, Xu Z, Yan S, Zou Z, J. Mater. Chem. A, 5, 8402 (2017)
- Chiang CY, Shin Y, Ehrman S, J. Electrochem. Soc., 159(2), B227 (2012)
- Kumari S, Tripathi C, Singh AP, Chauhan D, Shrivastav R, Dass S, Satsangi VF, Curr. Sci., 19, 1062 (2006)
- Kushwaha A, Aslam M, Electrochim. Acta, 130, 222 (2014)
- Wolcott A, Smith WA, Kuykendall TR, Zhao Y, Zhang JZ, Small, 5, 104 (2009)
- Yang XG, Du C, Liu R, Xie J, Wang DW, J. Catal., 304, 86 (2013)
- Berger S, Tsuchiya H, Ghicov A, Schmuki P, Appl. Phys. Lett, 88, 203119 (2006)
- Ng C, Ng YG, Iwase A, Amal R, ACS Appl. Mater. Interfaces, 5(11), 5269 (2013)
- Kang Q, Cao J, Zhang Y, Liu L, Xu H, Te J, J. Mater. Chem. A, 1, 5766 (2013)
- Spray RL, McDonald KJ, Choi KS, J. Phys. Chem. C, 115(8), 3497 (2011)
- Wang Y, Bai W, Han S, Wang H, Wu Q, Chen J, Jiang G, Zhao Z, Xu C, Huan Q, Curr. Catal., 6(1), 50 (2017)
- Banerjee S, Wu F, Myung Y, Chatman S, Niedzwiedzki DM, Banerjee P, J. Electrochem. Soc., 165(7), H417 (2018)
- Kimura SH, Moniz SJA, Tang J, Parkin IP, ACS Sustain. Chem. Eng., 3, 710 (2015)
- Shaislamov U, Krishnamoorthy K, Kim SJ, Choi S, Chun W, Lee HJ, J. Nanosci. Nanotechnol., 16, 10541 (2016)
- Toupin J, Strubb H, Kressman S, Artero V, Krins N, Robert CL, J. Sol Gel Sci. Techn., 89, 255 (2019)