화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.82, 180-189, February, 2020
Sonochemical synthesis of flower-like ZnO assembled by hollow cones toward water vapor permeability and water resistance enhancement of waterborne film
E-mail:,
In this study, flower-like ZnO assembled by hollow cones (F-ZnO-HCs) were synthesized via sonochemical route and the related morphology and structure of product were characterized. Then, F-ZnO-HCs nanostructures were employed to polyacrylate and the effect of F-ZnO-HCs on the properties of waterborne films was investigated. Meanwhile, the morphological evolution of F-ZnO-HCs was proposed and the superiority of F-ZnO-HCs on synchronously improving the water resistance and water vapor permeability of polyacrylate film was discussed. The results showed that F-ZnO-HCs possessed an average diameter of ~800 nm and a large specific surface area of 16.01 m2 g-1. Adjusting the water content and citric acid dosage, the morphology of ZnO transformed from F-ZnO-HCs to ZnO nanoparticles, F-ZnO-NSs, F-ZnO-SCs and F-ZnO-NRs. F-ZnO-HCs nanostructures as fillers not only significantly enhance the stability of polyacrylate latex but also simultaneously improve the water vapor permeability and water resistance of polyacrylate film. Moreover, compared with other morphological ZnO, F-ZnO-HCs was the best for simultaneously improving the water resistance and water vapor permeability of polyacrylate film. F-ZnO-HCs is an ideal candidate for resolving the contradiction of the water resistance and water vapor permeability of waterborne films.
  1. Xing XX, Xiao XC, Wang LH, Wang YD, Sens. Actuators B-Chem., 247, 797 (2017)
  2. Qiao PY, Zhang LX, Zhu MY, Yin YY, Zhao ZW, Sun HN, Dong JY, Bie LJ, Sens. Actuators B-Chem., 250, 189 (2017)
  3. Mao YQ, Li LH, Zou YJ, Shou XY, Zhu LP, Liao GH, Ceram. Int., 45.2, 1724 (2019)
  4. Tripathy N, Ahmad R, Kuk H, Hahn YB, Khang G, Ceram. Int., 42, 9519 (2016)
  5. Luo J, Wang YX, Zhang QF, Sol. Energy, 163, 289 (2018)
  6. Zhu SB, Tian X, Chen JJ, Shan LM, Xu XL, Zhou ZW, J. Phys. Chem. C., 118, 6401 (2014)
  7. Caliskan S, Phys. E, 107, 67 (2019)
  8. Krishnan U, Kaur M, Kaur G, Singh K, Dogra AR, Kumar M, Kumar A, Mater. Res. Bull., 111, 212 (2019)
  9. Pourrahimi AM, Liu DM, Andersson RL, Strom V, Gedde UW, Olsson RT, Langmuir, 32(42), 11002 (2016)
  10. Zhu L, Li YQ, Zeng W, Appl. Surf. Sci., 427, 281 (2018)
  11. Peng JY, Zhao XJ, Wang WF, Gong X, Langmuir, 35(25), 8404 (2019)
  12. Cao MJ, Wang F, Zhu JF, Zhang X, Qin Y, Wang L, Mater. Lett., 192, 1 (2017)
  13. Quek JA, Lam SM, Sin JC, Mohamed AR, J. Photochem. Photobiol. B-Biol., 187, 66 (2018)
  14. Shi RX, Yang P, Dong XB, Ma Q, Zhang AY, Appl. Surf. Sci., 264, 162 (2013)
  15. Zhang Z, Choi MG, Baek MK, Deng ZX, Yong KJ, ACS Appl. Mater. Interfaces, 9, 3967 (2017)
  16. Motaung DE, Mhlongo GH, Nkosi SS, Malgas GF, Mwakikunga B, Coetsee E, Swart HC, Abdallah HMI, Moyo T, Ray SS, ACS Appl. Mater. Interfaces, 12, 8981 (2014)
  17. Taheri M, Abdizadeh H, Golobostanfard MR, Mater. Chem. Phys., 220, 118 (2018)
  18. Wang XZ, Liu W, Liu JR, Wang FL, Kong J, Qiu S, He CZ, Luan LQ, ACS Appl. Mater. Interfaces, 4, 817 (2012)
  19. Bao Y, Wang C, Ma JZ, Ceram. Int., 42, 10289 (2016)
  20. Chattopadhyay KK, Maiti S, Pal S, CrystEngComm, 17, 9264 (2015)
  21. Zhu CQ, Lu BA, Su Q, Xie EQ, Lan W, Nanoscale, 4, 3060 (2012)
  22. Wang M, Zhao B, Xu SH, Lin L, Liu SJ, He DN, Chem. Commun., 50, 930 (2013)
  23. Xu XB, Wu M, Asoro M, Ferreira PJ, Fan DL, Cryst. Growth Des., 12, 4829 (2012)
  24. He JL, Zheng XL, Hong XD, Wang WP, Cao YY, Chen T, Kong LJ, Wu YP, Wu ZM, Kang JY, Mater. Lett., 216 (2017)
  25. Hu XL, Zhu YJ, Wing SW, Mater. Chem. Phys., 88(2-3), 421 (2004)
  26. Carp O, Tirsoaga A, Ene R, Ianculescu A, Negrea RF, Chesler P, Ionita G, Birjega R, Ultrason. Sonochem., 36, 326 (2017)
  27. Nguyen DT, Kim KS, Chem. Eng. J., 276, 11 (2015)
  28. Gupta A, Srivastava R, Ultrason. Sonochem., 41, 47 (2018)
  29. Jung SH, Oh E, Lee KH, Yang Y, Park CG, Park WJ, Jeong SH, Cryst. Growth Des., 8, 265 (2008)
  30. Khorsand Zak A, abd. Majid WH, Wang HZ, Yousefi R, Moradi Golsheikh A, Ren ZF, Ultrason. Sonochem., 20, 395 (2013)
  31. Mascia L, Zhang WW, Gatto F, Scarpellini A, Pompa PP, Mele E, ACS Appl. Polym. Mater., 7, 1707 (2019)
  32. Cheng DS, He MT, Li WB, Wu JH, Ran JH, Cai GM, Wang X, Appl. Surf. Sci., 467, 534 (2019)
  33. Li JJ, Chen S, Liu WT, Fu RF, Tu SJ, Zhao YH, Dong LQ, Yan B, Gu YC, J. Phys. Chem. C., 123, 11378 (2019)
  34. Li YX, Miao P, Zhou W, Gong X, Zhao XJ, J. Mater. Chem. A, 5, 21452 (2017)
  35. Luo L, Gong GF, Deng JQ, Shi G, Zhou H, Adv. Mater. Res., 5, 168 (2011)
  36. Uemura Y, Maetsuruu YS, Fujita T, Yoshida M, Hatate Y, Yamada K, Korean J. Chem. Eng., 23(1), 144 (2006)
  37. Gong X, Wang YJ, Kuang TR, ACS Sustainable Chem. Eng., 5, 11204 (2017)
  38. Bao Y, Feng CP, Wang C, Ma JZ, Prog. Org. Coat., 112, 270 (2017)
  39. Yan WB, Zhang XY, Zhu YA, Chen HQ, Iran. Polym. J., 21, 631 (2012)
  40. Wei LF, Zhang WB, Ma JZ, Bai SL, Ren YJ, Liu C, Simion D, Qin JB, Carbon, 14, 679 (2019)
  41. Hu WY, Dong FQ, Zhang J, Liu MX, He HC, Wu YD, Yang DM, Deng HQ, Appl. Surf. Sci., 442, 298 (2018)
  42. He CX, Lei BX, Wang YF, Su CY, Fang YP, DB, Chem. Eur. J., 19, 8757 (2010)
  43. Lai YL, Meng M, Yu YF, Wang XT, Ding T, Appl. Catal. B: Environ., 105(3-4), 335 (2011)
  44. Wang YQ, Ma Q, Jia HX, Wang ZS, Ceram. Int., 42, 10751 (2016)
  45. Kale RB, Hsu YJ, Lin YF, Lu SY, Superlattices Microstruct., 69, 239 (2014)
  46. Li WJ, Shi EW, Zhong WZ, Yin ZW, J. Cryst. Growth, 203, 186 (1999)
  47. Weintraub B, Zhou ZZ, Li YH, Deng YL, Nanoscale, 2, 1573 (2010)
  48. Pol VG, Reisfeld R, Gedanken A, Chem. Mater., 14, 3920 (2002)