화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.82, 205-210, February, 2020
Effects of electromagnetic irradiation on low-molecular-weight fraction of fluidized catalytic cracking decant oil for synthesis of pitch precursor
E-mail:
We examined the effects of different energies of electromagnetic irradiation on the molecular size increase in the low-molecular-weight fraction of fluidized catalytic cracking decant oil (LMFD), which was fractionated from the original fluidized catalytic cracking decant oil. Microwave (MW) radiation was employed as a relatively low-energy source, and an electron beam (EB) was employed as a high-energy source. Variations in viscosity, color, molecular weight, and functional groups of the LMFD were examined before and after irradiation to illuminate the LMFD reaction mechanism. The viscosity increased from 43.17 cP for LMFD to 3978 cP after 3 h of MW irradiation (MW3h) and to 1136 cP after 1000 kGy EB irradiation (EB1000). The reddish-brown color of the LMFD changed to black for the MW3h sample, whereas the EB1000 sample changed to a dark brown. As evaluated by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, the molecular weights of the MW-irradiated samples increased more than those of the EB samples. The results can be related to the activation energies for radical formation and recombination. MW irradiation is considered to have an effective energy source for both radical formation and recombination, whereas EB irradiation exhibits an energy too high for radical recombination.
  1. Gary JH, Handwerk GE, Kaiser MJ, Petroleum Refining: Technology and Economics, CRC Press, 2007.
  2. Leffler WL, Petroleum Refining for the Nontechnical Person, (1985).
  3. Mochida I, Toshima H, Korai Y, Varga T, J. Mater. Sci., 25(8), 3484 (1990)
  4. Mora E, Blanco C, Santamarı’a R, Granda M, Menendez R, Carbon, 41(3), 445 (2003)
  5. Park SH, Yang KS, Soh SY, Carbon Lett., 2(2), 99 (2001)
  6. Marsh H, Heintz EA, Reinoso FR, Introduction to Carbon Technologies, Universidad de Alicante, Servicio de Publicaciones, 1997.
  7. Yoshimura S, Chang RPH, Supercarbon: Synthesis, Properties and Applications, Springer Science & Business Media, 2013.
  8. Otani S, Kokubo Y, Koitabashi T, Bull. Chem. Soc. Jpn., 43(10), 3291 (1970)
  9. Riggs DRD, 1980.
  10. Strehlow R, US Oak Ridge national Laboratory Report No. ORNL-4622, Molten Salt Reactor Program, Semi-Annual Progress Report, Period Ending August 31, 135 (1970).
  11. Mochida I, Kudo K, Fukuda N, Takeshita K, Takahashi R, Carbon, 13(2), 135 (1975)
  12. Yamada Y, Matsumoto S, Fukuda K, Honda H, Tanso, 1981(107), 144 (1981)
  13. Park YD, Mochida I, Carbon, 27(6), 925 (1989)
  14. Schanche JS, Mol. Divers., 7(2), 291 (2003)
  15. Sarychev V, Granovskii AY, Nevskii S, Konovalov S, Gromov V, Materials Science and Engineering, IOP Publishing, pp.012031 2017.
  16. Krasheninnikov AV, Banhart F, Nat. Mater., 6(10), 723 (2007)
  17. Proskurovsky DI, Rotshtein VP, Ozur GE, Markov AB, Nazarov DS, Shulov VA, Ivanov YF, Buchheit RG, J. Vac. Sci. Technol. A, 16(4), 2480 (1998)
  18. Proskurovsky D, Rotshtein V, Ozur G, Ivanov YF, Markov A, Surf. Coat. Technol., 125(1-3), 49 (2000)
  19. Menendez JA, Arenillas A, Fidalgo B, Fernandez Y, Zubizarreta L, Calvo EG, Bermudez JM, Fuel Process. Technol., 91(1), 1 (2010)
  20. Jones DA, Lelyveld T, Mavrofidis S, Kingman S, Miles N, Resour. Conserv. Recycl., 34(2), 75 (2002)
  21. Issa AA, Al-Degs YS, Mashal K, Al Bakain RZ, J. Ind. Eng. Chem., 21, 230 (2015)
  22. Hoyle CE, Kinstle JF, American Chemical Society, Washington DC, 1990 c1990.
  23. Wang X, Qu K, Xu B, Ren J, Qu X, J. Mater. Chem., 21(8), 2445 (2011)
  24. Choi Y, Thongsai N, Chae A, Jo S, Kang EB, Paoprasert P, Park SY, In I, J. Ind. Eng. Chem., 47, 329 (2017)
  25. Brown J, Ladner W, Fuel, 39(1), 87 (1960)
  26. Chen YL, Wang YQ, Lu JY, Wu CA, Fuel, 88(8), 1426 (2009)