화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.82, 220-227, February, 2020
Influences of aggregation behavior of lignin on the microstructure and adsorptive properties of lignin-derived porous carbons by potassium compound activation
E-mail:,
In this work, lignin-derived porous carbon was prepared using alkali lignin (AL) or lignosulfonic acid (LS) as a precursor to reveal the activation effects of potassium compound (KHCO3, K2CO3 and KOH) on technical lignin with different degree of aggregation. Quartz crystal microbalance with dissipation and atomic force microscope testing results showed that KHCO3 had the best activation effect on AL having a highly aggregated and dense microstructure, thanks to the expansion effect from KHCO3. LS has a highly dispersed and loose microstructure, and KOH had the best activation effect on LS. This is because the stabilizing effect from KOH could avoid excessive destruction of pore structure during carbonization and activation process. Therefore, the specific surface area of AL-derived porous carbon obtained with KHCO3 and LS-derived porous carbon obtained with KOH could reach 2084 and 2770 m2 g-1, while the absorption capacity could reach 701 and 870 mg g-1 for sulfamethazine respectively. Our result provides a theoretical base for preparing high quality lignin-derived porous carbon adsorbent with different kinds of technical lignin.
  1. Zhang BP, Han XL, Gu PJ, Fang SQ, Bai J, J. Mol. Liq., 238, 316 (2017)
  2. Kim SH, Shon HK, Ngo HH, J. Ind. Eng. Chem., 16(3), 344 (2010)
  3. Bianchini C, Shen PK, Chem. Rev., 109(9), 4183 (2009)
  4. Upare PP, Lee JM, Hwang DW, Halligudi SB, Hwang YK, Chang JS, J. Ind. Eng. Chem., 17(2), 287 (2011)
  5. Jin LM, Gong RQ, Zhang WC, Xiang Y, Zheng JS, Xiang ZH, Zhang CM, Xia YY, Zheng JP, J. Mater. Chem. A, 7, 8234 (2019)
  6. Danish M, Ahmad T, Renew. Sust. Energ. Rev., 87, 1 (2018)
  7. El-Hendawy ANA, Samra SE, Girgis BS, Colloids Surf. A: Physicochem. Eng. Asp., 180, 209 (2001)
  8. Rahman IA, Saad B, Shaidan S, Rizal ESS, Bioresour. Technol., 96(14), 1578 (2005)
  9. Dang VBH, Doan HD, Dang-Vu T, Lohi A, Bioresour. Technol., 100(1), 211 (2009)
  10. Sanchez MLD, Macias-Garcia A, Diaz-Diez MA, Cuerda-Correa EM, Ganan-Gomez J, Nadal-Gisbert A, Appl. Surf. Sci., 252(17), 5984 (2006)
  11. Li KX, Chen W, Yang HP, Chen YQ, Xia SW, Xia MW, Tu X, Chen HP, Bioresour. Technol., 280, 260 (2019)
  12. Huang C, He J, Du L, Min D, Yong Q, J. Wood Chem. Technol., 36, 157 (2016)
  13. Huang C, He J, Narron R, Wang Y, Yong Q, ACS Sustain. Chem. Eng., 5, 11770 (2017)
  14. Bjelic A, Grilc M, Gyergyek S, Kocjan A, Makovec D, Likozar B, Catalysts, 8, 425 (2018)
  15. Bjelic A, Grilc M, Hus M, Likozar B, Chem. Eng. J., 359, 305 (2019)
  16. Bjelic A, Grilc M, Likozar B, Chem. Eng. J., 333, 240 (2018)
  17. Azadi P, Inderwildi OR, Farnood R, King DA, Renew. Sust. Energ. Rev., 21, 506 (2013)
  18. Qin Y, Yang D, Guo W, Qiu X, J. Ind. Eng. Chem., 27, 192 (2015)
  19. Cotoruelo LM, Marques MD, Diaz FJ, Rodriguez-Mirasol J, Rodriguez JJ, Cordero T, Chem. Eng. J., 184, 176 (2012)
  20. Hayashi JI, Kazehaya A, Muroyama K, Watkinson AP, Carbon, 38, 1873 (2000)
  21. Dai J, Xie A, Zhang R, Ge W, Chang Z, Tian S, Li C, Yan Y, J. Mol. Liq., 256, 203 (2018)
  22. Deng J, Xiong T, Wang H, Zheng A, Wang Y, ACS Sustain. Chem. Eng., 4, 3750 (2016)
  23. Zhou H, Qiu X, Yang D, Xie S, ACS Sustain. Chem. Eng., 4, 1248 (2016)
  24. Qian Y, Deng YH, Qiu XQ, Li H, Yang DJ, Green Chem., 16, 2156 (2014)
  25. Tang QQ, Zhou MS, Li YX, Qiu XQ, Yang DJ, ACS Sustain. Chem. Eng., 6, 1379 (2018)
  26. Zhang BP, Yang DJ, Wang H, Qian Y, Huang JH, Yu LX, Qiu XQ, ACS Sustain. Chem. Eng., 7, 1120 (2019)
  27. Wang H, Qiu XQ, Liu WF, Fu FB, Yang DJ, Ind. Eng. Chem. Res., 56(39), 11133 (2017)
  28. Xi Y, Yang D, Qiu X, Wang H, Huang J, Li Q, Ind. Crop. Prod., 124, 747 (2018)
  29. Alipoormazandarani N, Fatehi P, Langmuir, 34(50), 15293 (2018)
  30. Saarinen T, Osterberg M, Laine J, J. Dispersion Sci. Technol., 30, 969 (2009)
  31. Lou HM, Wang MX, Lai HR, Lin XL, Zhou MS, Yang DJ, Qiu XQ, Bioresour. Technol., 146, 478 (2013)
  32. Qui XQ, Kong QA, Zhou MS, Yang DJ, J. Phys. Chem. B, 114(48), 15857 (2010)
  33. Li YY, Yang DJ, Huang QL, Li R, Holzforschung, 70, 1023 (2016)
  34. Wang JY, Li Y, Qiu XQ, Liu D, Yang DJ, Liu WF, Qian Y, Appl. Surf. Sci., 425, 736 (2017)
  35. Park JH, Hwang RH, Yoon HC, Yi KB, J. Ind. Eng. Chem., 74, 199 (2019)
  36. Jeon JW, Zhang L, Lutkenhaus JL, Laskar DD, Lemmon JP, Choi D, Nandasiri MI, Hashmi A, Xu J, Motkuri RX, Fernandez CA, Liu J, Tucker MP, McGrail PB, Yang B, Nune SK, ChemSusChem, 8, 428 (2015)
  37. Ponomarev N, Sillanpaa M, Ind. Crop. Prod., 135, 30 (2019)
  38. Babeł K, Jurewicz K, Carbon, 46, 1948 (2008)
  39. Lu SY, Jin M, Zhang Y, Niu YB, Li CM, Adv. Eng. Mater., 8, 170254 (2017)
  40. Yang F, Sun L, Xie W, Jiang Q, Gao Y, Zhang W, Zhang Y, Sci. Total Environ., 607-608, 1391 (2017)
  41. Wang J, Kaskel S, J. Mater. Chem., 22, 23710 (2012)
  42. Deng J, Xiong TY, Xu F, Li MM, Han CL, Gong YT, Wang HY, Wang Y, Green Chem., 17, 4053 (2015)
  43. Chang ZS, Dai JD, Xie AT, He JS, Zhang RL, Tian SJ, Yan YS, Li CX, Xu W, Shao R, Ind. Eng. Chem. Res., 56(33), 9367 (2017)
  44. Li ZL, Chen JY, Ge YY, Chem. Eng. J., 308, 809 (2017)