화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.82, 254-260, February, 2020
Studies on the effect of acetate ions on the optical properties of InP/ZnSeS core/shell quantum dots
E-mail:
The effect of residual acetate ions in indium oleate (In(OA)3) precursor on the photoluminescence quantum yield (PL QY) and size distribution of InP-based core/shell quantum dots (QDs) was studied. For comparison, the synthesis conditions of In(OA)3 were varied to control the amount of acetate ions that remained in the In(OA)3 precursor. The acetate ions resulted in smaller crystallites in single QD and in surfaces with a greater defect concentration, yielding low PL QYs and broader size distributions. For a complete exchange of acetate ligand in indium acetate (In(Ac)3) with oleate, In(Ac)3 was reacted with excess oleic acid. Pure In(OA)3 precursor led to bright InP/ZnSeS core/shell QDs with a uniform size after a shell was formed on the InP core QDs.
  1. Xu GX, Zeng SW, Zhang BT, Swihart MT, Yong KT, Prasad PN, Chem. Rev., 116(19), 12234 (2016)
  2. Carey GH, Abdelhady AL, Ning ZJ, Thon SM, Bakr OM, Sargent EH, Chem. Rev., 115(23), 12732 (2015)
  3. Cui L, He XP, Chen GR, RSC Adv., 5, 26644 (2015)
  4. Jiang Y, Cho SY, Shim M, J. Mater. Chem. C, 6, 2618 (2018)
  5. Kwon OH, Heo JH, Park SW, Kim SW, Im SH, J. Ind. Eng. Chem., 75, 164 (2019)
  6. Jeon SO, Yook KS, Joo CW, Lee JY, J. Ind. Eng. Chem., 15(4), 602 (2009)
  7. Jang E, Jang H, Kang HA, Cho O, SID Symp. Dig. Tech. Pap, 48, 980 (2017)
  8. Smith AM, Nie S, Accounts Chem. Res., 43, 190 (2010)
  9. Availableonline: https://rohs.exemptions.oeko.info/index.php?id=316.
  10. Li Y, Hou XQ, Dai XL, Yao ZL, Lv LL, Jin YZ, Peng XG, J. Am. Chem. Soc., 141(16), 6448 (2019)
  11. Xu Z, Li Y, Li J, Pu C, Zhou J, Lv L, Peng X, Chem. Mater., 31, 5331 (2019)
  12. Kim M, Shin WH, Bang J, J. Lumines., 205, 555 (2019)
  13. Tamang S, Lincheneau C, Hermans Y, Jeong S, Reiss P, Chem. Mater., 28, 2491 (2016)
  14. Bang E, Choi Y, Cho J, Suh YH, Ban HW, Son JS, Park J, Chem. Mater., 29, 4236 (2017)
  15. Ung TDT, Tran TTH, Nguyen QL, Reiss P, Mater. Chem. Phys., 112(3), 1120 (2008)
  16. Jun KW, Khanna PK, Hong KB, Baeg JO, Suh YD, Mater. Chem. Phys., 96(2-3), 494 (2006)
  17. Liu Z, Kumbhar A, Xu D, Zhang J, Sun Z, Fang J, Angew. Chem.-Int. Edit., 47, 3540 (2008)
  18. Li L, Protiere M, Reiss P, Chem. Mater., 20, 2621 (2008)
  19. Cros-Gagneux A, Delpech F, Nayral C, Cornejo A, Coppel Y, Chaudret B, J. Am. Chem. Soc., 132(51), 18147 (2010)
  20. Ryu E, Kim S, Jang E, Jun S, Jang H, Kim B, Kim SW, Chem. Mater., 21, 573 (2009)
  21. Lim J, Bae WK, Lee D, Nam MK, Jung J, Lee C, Char K, Lee S, Chem. Mater., 23, 4459 (2011)
  22. Kim T, Kim SW, Kang M, Kim SW, J. Phys. Chem. Lett., 3, 214 (2012)
  23. Tournie E, Trampert A, Phys. Stat. Sol., 244, 2683 (2007)
  24. Grein CH, Faurie JP, Bousquet V, Tournie E, Benedek R, de la Rubia T, J. Cryst. Growth, 178, 258 (1997)
  25. Kley A, Neugebauer J, Phys. Rev. B, 50, 8616 (1994)
  26. Farrell HH, Tamargo MC, de Miguel JL, J. Vac. Sci. Technol. B, 6, 767 (1988)
  27. Gunshor RL, Kohayashi M, Otsuka N, Nurmikko AV, J. Cryst. Growth, 115, 652 (1991)
  28. Talapin DV, Mekis I, Gotzinger S, Kornowski A, Benson O, Weller H, J. Phys. Chem. B, 108(49), 18826 (2004)
  29. Smith DK, Luther JM, Semonin OE, Nozik AJ, Beard MC, ACS nano, 5, 183 (2011)
  30. Xie R, Li Z, Peng X, J. Am Chem. Soc., 131, 15457 (2009)
  31. Boles MA, Ling D, Hyeon T, Talapin DV, Nat. Mater., 15(2), 141 (2016)
  32. Talapin DV, Rogach AL, Shevchenko EV, Kornowski A, Haase M, Weller H, J. Am. Chem. Soc., 124(20), 5782 (2002)
  33. Talapin DV, Gaponik N, Borchert H, Rogach AL, Haase M, Weller H, J. Phys. Chem. B, 106(49), 12659 (2002)