화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.82, 324-332, February, 2020
Characterizations of absorption, scattering, and transmission of typical nanoparticles and their suspensions
E-mail:
Several numerical simulation models based on the finite element method (FEM) were established to understand the optical properties of nanoparticles and their suspensions, addressing UV-Vis spectra, scattering, absorption, and transmission. The studied nanoparticles covered gold (Au), silver (Ag), copper (Cu), silica (SiO2), titanium dioxide (TiO2), graphite and polystyrene, in their varied sizes and suspension concentrations. The extinction peak of UV-Vis spectrum and sizes of Au, Ag and Cu nanoparticles showed good linearity in certain size ranges, but not for other nanoparticles. Nanoparticles of different materials and sizes could also be distinguished by their scattering patterns and temperature variations due to absorption. Furthermore, the simplified model based on Lambert-Beer law was found to be effective in a good accuracy to describe both absorption and transmission properties of nanoparticle suspensions. Therefore, the optical properties of nanoparticles and their suspensions can be understood comprehensively and effectively by the established simulation methods.
  1. Hewakuruppu YL, Dombrovsky LA, Chen C, Timchenko V, Jiang X, Baek S, Taylor RA, Appl. Opt., 52, 6041 (2013)
  2. Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W, Tyagi H, J. Appl. Phys., 113, 1 (2013)
  3. Baipaywad P, KiM YK, Wi JS, Paik TJ, Park HS, J. Ind. Eng. Chem., 53, 177 (2017)
  4. Murray WA, Suckling JR, Barnes WL, Nano Lett., 6, 1772 (2006)
  5. Nehl CL, Liao H, Hafner JH, Nano Lett., 6, 683 (2006)
  6. Dadkhah M, Salavati-Niasari M, Mir N, J. Ind. Eng. Chem., 20(6), 4039 (2014)
  7. Naqvi S, Samim M, Abdin MZ, Ahmed FJ, Maitra AN, Prashant CK, Dinda AK, Int. J. Nanomed., 5, 983 (2010)
  8. Leite ER, Weber IT, Longo E, Varela JA, Adv. Mater., 12(13), 965 (2000)
  9. Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellov M, Food Addit. Contam., 25, 795 (2008)
  10. Hassellov M, Readman JW, Ranville JF, Tiede K, Ecotoxicology, 17, 344 (2008)
  11. Tomaszewska E, Soliwoda K, Kadziola K, Tkacz-Szczesna B, Celichowski G, Cichomski M, Szmaja W, Grobelny J, J. Nanomater., 2013, 60 (2013)
  12. Cho TJ, Hackley VA, Anal Bioanal Chem., 398, 2003 (2010)
  13. Kato H, Ouchi N, Nakamura A, Powder Technol., 315, 68 (2017)
  14. Hole P, Sillence K, Hannell C, J. Nanopart. Res., 15, 2101 (2013)
  15. Dragovic RA, Gardiner C, Brooks AS, Biol., Med. 7, 780 (2011).
  16. Kumari N, Pathak PN, J. Ind. Eng. Chem., 20(4), 1382 (2014)
  17. Brar SK, Verma M, Trends Anal. Chem., 30, 4 (2011)
  18. Filipe V, Hawe A, Jiskoot W, Pharm. Res., 27, 796 (2010)
  19. Kato H, Nakamura A, Takahashi K, Kinugasa S, Nanomater., 2, 15 (2012)
  20. Ye M, Wang SM, Xu YQ, Powder Technol., 104(1), 80 (1999)
  21. Clement S, Gardner B, Razali WAW, Nanotechnol., 28, 475702 (2017)
  22. Finsy R, Deriemaeker L, Gelade E, Joosten J, J. Colloid Interface Sci., 153, 337 (1992)
  23. Yang H, Yang HM, Kong P, Zhu YM, Dai SG, Zheng G, Powder Technol., 246, 499 (2013)
  24. Tontrup C, Gruy F, Powder Technol., 107(1-2), 1 (2000)
  25. Breitenstein M, Krauter U, Riebel U, Part. Part. Syst. Charact., 16(6), 249 (1999)
  26. Wessely B, Altmann J, Ripperger S, Chem. Eng. Technol., 19(5), 438 (1996)
  27. Tanner CE, Sun N, Deatsch A, Li F, Ruggiero ST, Appl. Opt., 56, 1908 (2017)
  28. Shen J, Yu B, Xu Y, Xu F, J. Shen, 166, 91 (2006).
  29. Xiao X, Bai B, Xu N, Appl. Opt., 54, 7160 (2015)
  30. Hua Y, Chandra K, Dam DHM, Wiederrecht GP, Odom TW, J. Phys. Chem. Lett., 6, 4904 (2015)
  31. Sun XG, Tang H, Dai JM, Powder Technol., 190(3), 292 (2009)
  32. Horvath IT, Colinet P, Vetrano MR, Powder Technol., 291, 375 (2016)
  33. He ZZ, Mao JK, Han XS, Powder Technol., 325, 510 (2018)
  34. Hu X, Li Y, Tian J, Yang H, Cui H, J. Ind. and Eng. Chem. 45, 189 (2017).
  35. Khlebtsov NG, Anal. Chem., 80, 6620 (2008)
  36. Amendola V, Meneghetti M, J. Phys. Chem. C, 113, 4277 (2009)
  37. Ryabenko AG, Dorofeeva TV, Zvereva GI, Carbon, 42, 1523 (2004)
  38. Rahman IA, Vejayakumaran P, Sipaut CS, Ismail J, Chee CK, Mater. Chem. Phys., 114(1), 328 (2009)
  39. Evanoff DD, Chumanov G, J. Phys. Chem. B, 108(37), 13957 (2004)
  40. Baset S, Akbari H, Zeynali H, Shafie M, Dig. J. Nanomater. Biostructures, 6, 709 (2011)
  41. Xu N, Bai B, Tan Q, Jin G, Opt. Express., 21, 21639 (2013)
  42. Liu X, Atwater M, Wang J, Huo Q, Colloids Surf. B: Biointerfaces, 58, 3 (2007)
  43. Hong EJ, Kim YS, Choi DG, Shim MS, J. Ind. Eng. Chem., 67, 429 (2018)
  44. Xu N, Bai B, Tan Q, Jin G, Opt. Express., 21, 2987 (2013)
  45. Potenza MAC, Krpetic Z, Sanvito T, Nanoscale, 9, 2778 (2017)
  46. Kelesidis GA, Kholghy MR, Zuercher J, Powder Technol., 3, 2 (2019)
  47. Phan AD, Le NB, Lien NTH, Wakabayashi K, J. Phys. Chem. C, 122, 19801 (2018)
  48. Bartsch M, Dehler M, Dohlus M, Comput. Phys. Commun., 72, 22 (1992)
  49. Wang XJ, Wang YQ, Yang XX, Cao Y, Sol. Energy, 181, 439 (2019)
  50. Liu BJ, Lin KQ, Hu S, Anal. Chem., 87, 1058 (2015)
  51. Agnihotri S, Mukherji S, Mukherji S, Rsc Adv., 4, 3974 (2014)
  52. Njoki PN, Lim IS, Mott D, Park HY, J. Phys. Chem. C, 111, 14664 (2007)
  53. Haiss W, Thanh NTK, Aveyard J, Ferning DG, Anal. Chem., 79, 4215 (2007)