Journal of Industrial and Engineering Chemistry, Vol.82, 359-366, February, 2020
Gold nanodots-decorated nickel hydroxide nanoflowers for enhanced electrochemical oxygen evolution activity
E-mail:
Oxygen evolution reaction (OER) is considered a major challenge in the production of efficient
electrochemical water splitting devices. To overcome the challenge, the development of inexpensive electrochemical catalysts with high energy conversion efficiencies is vital. Nanohybrids composed of noble metal nanoparticles and transition metal hydroxides often possess catalytically active sites that are beneficial for OER performance. In this study, we report a successful synthesis of Ni(OH)2 nanoflowers with a high degree of crystallinity and uniformity. The as-prepared Ni(OH)2 nanoflowers are employed as templates for effective and controllable loading of Au nanodots to obtain Ni(OH)2@Au nanohybrids. An examination of the OER activity reveals that Ni(OH)2@Au nanohybrids exhibit a considerably lower overpotential (η) value (390 mV) at a current density of 5 mA cm-2 and a smaller Tafel slope (120 mV dec- 1) than those of Ni(OH)2 nanoflowers (540 mV and 324 mV dec-1, respectively). The OER enhancement effect is mainly attributed to the decoration of Au nanodots, inducing charge transfer from Ni to Au and thereby stabilizing the Ni species at high oxidation levels. Moreover, the uniform loading of Au nanodots on the anisotropic Ni(OH)2 nanoflowers provides more active interfacial surfaces, which are expedient to OER.
Keywords:Au nanodots;Ni(OH)2 nanoflowers;Ni(OH)2@Au nanohybrids;Oxygen evolution reaction (OER);Electrocatalyst
- Roger I, Shipman MA, Symes MD, Nat. Rev. Chem., 1, 0003 (2017)
- Jin HY, Guo CX, Liu X, Liu JL, Vasileff A, Jiao Y, Zheng Y, Qiao SZ, Chem. Rev., 118(13), 6337 (2018)
- Zhao Q, Yan ZH, Chen CC, Chen J, Chem. Rev., 117(15), 10121 (2017)
- Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM, Chem. Soc. Rev., 46, 337 (2017)
- Hunter BM, Gray HB, Muller AM, Chem. Rev., 116(22), 14120 (2016)
- Zhang X, Cheng X, Zhang Q, J. Energy Chem., 25, 967 (2016)
- Agbe H, Nyankson E, Raza N, Dodoo-Arhin D, Chauhan A, Osei G, Kumar V, Kim KH, J. Ind. Eng. Chem., 72, 31 (2019)
- Qin Q, Jang H, Chen L, Nam G, Liu X, Cho J, Adv. Eng. Mater., 8, 180147 (2018)
- Du X, Yang Z, Li Y, Gong Y, Zhao M, J. Mater. Chem. A, 6, 6938 (2018)
- Liang X, Lin J, Cao X, Sun W, Yang J, Ma B, Ding Y, Chem. Commun., 55, 2529 (2019)
- Du XQ, Su H, Zhang XS, Int. J. Hydrog. Energy, 44(39), 21637 (2019)
- Qin Q, Jang H, Li P, Yuan B, Liu X, Cho J, Adv. Eng. Mater., 9, 180331 (2018)
- Chai YM, Zhang XY, Lin JH, Qin JF, Liu ZZ, Xie JY, Guo BY, Yang Z, Dong B, Int. J. Hydrog. Energy, 44(21), 10156 (2019)
- Chi JQ, Yan KL, Xiao Z, Dong B, Shang X, Gao WK, Li X, Chai YM, Liu CG, Int. J. Hydrog. Energy, 42(32), 20599 (2017)
- Li X, Yan KL, Rao Y, Dong B, Shang X, Han GQ, Chi JQ, Hu WH, Liu YR, Chai YM, Liu CG, Electrochim. Acta, 220, 536 (2016)
- Burke MS, Zou S, Enman LJ, Kellon JE, Gabor CA, Pledger E, Boettcher SW, J. Phys. Chem. Lett., 6, 3737 (2015)
- Lu Z, Xu W, Zhu W, Yang Q, Lei X, Liu J, Li Y, Sun X, Duan X, Chem. Commun., 50, 6479 (2014)
- Qi J, Zhang W, Xiang R, Liu K, Wang HY, Chen M, Han Y, Cao R, Adv. Sci., 2, 150019 (2015)
- Klaus S, Cai Y, Louie MW, Trotochaud L, Bell AT, J. Phys. Chem. C, 119, 7243 (2015)
- Yu L, Yang JF, Guan BY, Lu Y, Lou XW, Angew. Chem.-Int. Edit., 57, 172 (2018)
- Li X, Han GQ, Liu YR, Dong B, Hu WH, Shang X, Chai YM, Liu CG, ACS Appl. Mater. Interfaces, 8, 20057 (2016)
- Mai HD, Rafiq K, Yoo H, Chem. Eur. J., 23, 5631 (2017)
- Mai HD, Sung GY, Yoo H, RSC Adv., 5, 78807 (2015)
- Zhou X, Xia Z, Zhang Z, Ma Y, Qu Y, J. Mater. Chem. A, 2, 11799 (2014)
- Kim SI, Thiyagarajan P, Jang JH, Nanoscale, 6, 11646 (2014)
- Gawande MB, Goswami A, Asefa T, Guo H, Biradar AV, Peng DL, Zboril R, Varma RS, Chem. Soc. Rev., 44, 7540 (2015)
- Ray C, Pal T, J. Mater. Chem. A, 5, 9465 (2017)
- Choi S, Moon Y, Yoo H, J. Colloid Interface Sci., 469, 269 (2016)
- Mai HD, Le VCT, Pham TMT, Ko JH, Yoo H, ChemNanoMat, 3, 857 (2017)
- Moon Y, Mai HD, Yoo H, ChemNanoMat, 3, 196 (2017)
- Tran NM, Mai HD, Yoo H, Nano Res., 11, 5890 (2018)
- Yeo BS, Bell AT, J. Am. Chem. Soc., 133(14), 5587 (2011)
- Yeo BS, Bell AT, J. Phys. Chem. C, 116, 8394 (2012)
- Gorlin Y, Chung CJ, Benck JD, Nordlund D, Seitz L, Weng TC, Sokaras D, Clemens BM, Jaramillo TF, J. Am. Chem. Soc., 136(13), 4920 (2014)
- Seitz LC, Hersbach TJP, Nordlund D, Jaramillo TF, J. Phys. Chem. Lett., 6, 4178 (2015)
- Chakthranont P, Kibsgaard J, Gallo A, Park J, Mitani M, Sokaras D, Kroll T, Sinclair R, Mogensen MB, Jaramillo TF, ACS Cat., 7, 5399 (2017)
- Mai HD, Le VCT, Yoo H, ACS Appl. Nano Mater., 2, 678 (2019)
- Strickler AL, Escudero-Escribano M, Jaramillo TF, Nano Lett., 17, 6040 (2017)
- Hou Y, Liu Y, Gao R, Li Q, Guo H, Goswami A, Zboril R, Gawande MB, Zou X, ACS Cat., 7, 7038 (2017)
- Byoun W, Jung S, Tran NM, Yoo H, ChemistryOpen, 7, 349 (2018)
- Zhang YY, Liu Y, Guo YP, Yeow YX, Duan HN, Li H, Liu HZ, Mater. Chem. Phys., 151, 160 (2015)
- Tan Y, Li Y, Kong L, Kang L, Ran F, Dalton Trans., 47, 8078 (2018)
- Fu Y, Sheng Q, Zheng J, Anal. Methods, 9, 2812 (2017)
- Zhao S, Jin RX, Abroshan H, Zeng CJ, Zhang H, House SD, Gottlieb E, Kim HJ, Yang JC, Jin RC, J. Am. Chem. Soc., 139(3), 1077 (2017)
- Ni B, He P, Liao W, Chen S, Gu L, Gong Y, Wang K, Zhuang J, Song L, Zhou G, Wang X, Small, 14, 170374 (2018)
- Zhou Y, Zeng HC, J. Phys. Chem. C, 120, 29348 (2016)