화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.82, 413-423, February, 2020
Numerical analysis of phase change materials/wood.plastic composite roof module system for improving thermal performance
E-mail:
Using phase change materials (PCMs) to store and release latent heat is one of the most efficient and reliable ways to reduce energy consumption. In this study, a PCM/wood.plastic composite (WPC) roof module system with PCM inserted into a hollow layer of WPC is proposed to reduce building roof surface temperature and improve building energy performance and indoor thermal comfort. A thermal performance evaluation showed that the roof surface temperature can be greatly reduced by increasing reflectivity. However, increasing reflectance can increase heating load and cause freezing-related problems in winter because surface temperature is greatly reduced. The application of the PCM/WPC roof module system reduced surface temperature by 7.37 °C in the summer. As the thickness of PCM increased, the surface temperature decreased; however, the variation was not constant. PCM with a phase change temperature of 30 °C was most effective in reducing surface temperature, while PCM with a phase change temperature of 20 °C was most effective in improving building energy performance and thermal comfort. This is because the PCM is applied to the outer face of the building. Therefore, the type and thickness of PCM should be selected considering reflectance, application purpose, and economic efficiency.
  1. Wang Z, Cui C, Peng S, J. Clean Prod., 211, 1201 (2019)
  2. Lin B, Zhu J, J. Clean Prod., 188, 312 (2018)
  3. Cui Y, Yan D, Hong TZ, Ma JJ, Energy, 130, 286 (2017)
  4. Kim M, Lee K, Cho GH, Build. Environ., 126, 471 (2017)
  5. Akbari H, Pomerantz M, Taha H, Sol. Energy, 70(3), 295 (2001)
  6. Anderson BG, Bell ML, Epidemiology, 20(2), 205 (2009)
  7. Gu Y, Li D, Urban Clim, 24, 982 (2018)
  8. Sarrat C, Lemonsu A, Masson V, Guedalia D, Atmos. Environ., 40(10), 1743 (2006)
  9. Morini E, Touchaei AG, Rossi F, Cotana F, Akbari H, Urban Clim., 24, 551 (2018)
  10. Synnefa A, Santamouris M, Livada I, Sol. Energy, 80(8), 968 (2006)
  11. Sangkakool T, Techato K, Zaman R, Brudermann T, J. Clean Prod., 196, 400 (2018)
  12. Greene C, Kedron P, Appl. Geogr., 95 (2018)
  13. Ascione F, Bianco N, de'Rossi F, Turni G, Vanoli GP, Appl. Energy, 104, 845 (2013)
  14. Bevilacqua P, Mazzeo D, Bruno R, Arcuri N, Energy Build., 150, 318 (2017)
  15. Chang SJ, Kang Y, Wi S, Jeong SG, Kim S, Appl. Therm. Eng., 114, 457 (2017)
  16. Li M, Wu ZS, Tan JM, Appl. Energy, 103, 393 (2013)
  17. Alawadhi EM, Alqallaf HJ, Energy Conv. Manag., 52(8-9), 2958 (2011)
  18. Alqallaf HJ, Alawadhi EM, Energy Build., 61, 73 (2013)
  19. Kosny J, Biswas K, Miller W, Kriner S, Sol. Energy, 86(9), 2504 (2012)
  20. Roman KK, O'Brien T, Alvey JB, Woo O, Energy, 96, 103 (2016)
  21. Chang SJ, Wi S, Jeong SG, Kim S, Energy Build., 117, 120 (2016)
  22. Chan ALS, Energy Build., 43(10), 2947 (2011)
  23. Soares N, Gaspar AR, Santos P, Costa JJ, Energy Build., 70, 411 (2014)
  24. Guarino F, Dermardiros V, Chen Y, Rao J, Athienitis A, Cellura M, Mistretta M, Energy Procedia, 70, 219 (2015)
  25. Tabares-Velasco PC, Christensen C, Bianchi M, Build. Environ., 54, 186 (2012)
  26. Evola G, Marletta L, Energy Procedia, 62, 13 (2014)
  27. Mazo J, El Badry AT, Carreras J, Delgado M, Boer D, Zalba B, Appl. Therm. Eng., 90, 596 (2015)
  28. Han Y, Taylor JE, Sustain. Cities Soc., 27, 287 (2016)
  29. Alam M, Jamil H, Sanjayan J, Wilson J, Energy Build., 78, 192 (2014)
  30. Sage-Lauck JS, Sailor DJ, Energy Build., 79, 32 (2014)
  31. Chernousov AA, Chan BYB, Energy Build., 118, 214 (2016)
  32. Baniassadi A, Sajadi B, Amidpour M, Noori N, Sustain. Energy Technol. Assess., 14, 92 (2016)
  33. Jamil H, Alam M, Sanjayan J, Wilson J, Energy Build., 133, 217 (2016)
  34. Ramakrishnan S, Wang X, Sanjayan J, Wilson J, Energy Procedia, 88, 725 (2016)
  35. Ramakrishnan S, Wang XM, Sanjayan J, Wilson J, Appl. Energy, 194, 410 (2017)
  36. Evola G, Marletta L, Sicurella F, Energy Build., 70, 480 (2014)
  37. Kim S, Kim S, Chang SJ, Chung O, Jeong SG, Energy Build., 70 (2014)
  38. Saffari M, de Gracia A, Ushak S, Cabeza LF, Energy Build., 112, 159 (2016)
  39. Fiorito F, Energy Procedia, 57, 2014 (2014)
  40. Li Y, Wang Y, Meng X, Wang M, Long E, Procedia Eng., 121, 1628 (2015)
  41. Sajjadian SM, Lewis J, Sharples S, Energy Build., 93, 83 (2015)
  42. Ascione F, De Masi RF, de Rossi F, Ruggiero S, Vanoli GP, Appl. Energy, 183, 938 (2016)
  43. Mi XM, Liu R, Cui HZ, Memon SA, Xing F, Lo Y, Appl. Energy, 175, 324 (2016)
  44. Chang SJ, Wi SH, Lee JK, Kim SM, J. Ind. Eng. Chem., 72, 255 (2019)
  45. Chung MH, Park JC, Energy Build., 116, 341 (2016)
  46. Karlessi T, Santamouris M, Synnefa A, Assimakopoulos D, Didaskalopoulos P, Apostolakis K, Build. Environ., 46(3), 570 (2011)
  47. Jin X, Medina MA, Zhang X, Appl. Therm. Eng., 103, 1057 (2016)