Korean Chemical Engineering Research, Vol.58, No.1, 98-105, February, 2020
Experimental Measurement and Correlation of two α-Amino Acids Solubility in Aqueous Salts Solutions from 298.15 to 323.15 K
E-mail:
By the gravimetric method at atmospheric pressure, the solubility of two α-amino acids was resolved over temperatures from (293.15 to 323.15) K. The α-amino acids studied were L-arginine and L-histidine. Results showed a salting-out effect on the solubility of the tested amino compounds. It is obvious that there was an increase in the solubility, in aqueous chloride solutions, with the increasing temperature. Results were translated regarding the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The solubility data was precisely associated with a semiempirical equation. The standard molar Gibbs free energies of transfer of selected α-amino compounds (ΔtrG°) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. The decrease in solubility is correlated to the positive (ΔtrG°) value which is most part of the enthalpic origin.
Keywords:L-histidine;L-arginine;Chloride salt effect;Solubility-temperature dependence;Transfer Gibbs free energies
- Bhattacharyya A, Bhattacharya SK, J. Solut. Chem., 42, 2149 (2013)
- Scott E, Peter F, Sanders J, Appl. Microbiol. Biotechnol., 75(4), 751 (2007)
- Lammens TM, Franssen MCR, Scott EL, Sanders JPM, Biomass Bioenerg., 44, 168 (2012)
- Mahali K, Roy S, Dolui BK, J. Solution Chem., 42(5), 1096 (2013)
- Roy S, Hossain A, Dolui BK, J. Chem. Eng. Data, 61(1), 132 (2016)
- Thombre SM, Sarwade BD, J. Macromol. Sci. A, 42(9), 1299 (2005)
- Mandal U, Bhattacharya S, Das K, Kundu KK, Z. Phys. Chem., 159(1), 21 (1988)
- Held C, Cameretti LF, Sadowski G, Ind. Eng. Chem. Res., 50(1), 131 (2011)
- Lu J, Wang XJ, Yang X, Ching CB, J. Chem. Eng. Data, 51(5), 1593 (2006)
- Pradhan AA, Vera JH, Fluid Phase Equilib., 152(1), 121 (1998)
- Romero CM, Oviedo DC, J. Solution Chem., 42(6), 1355 (2013)
- Koseoglu F, Kilic E, Dogan A, Anal. Biochem., 277(2), 243 (2000)
- Khoshkbarchi MK, Vera JH, Ind. Eng. Chem. Res., 36(6), 2445 (1997)
- Pradhan AA, Vera JH, J. Chem. Eng. Data, 45(1), 140 (2000)
- Roy S, Guin PS, Mahali K, Dolui BK, J. Mol. Liq., 218, 316 (2016)
- Anfinsen CB, Seheraga HA, Adv. Protein Chem., 29, 205 (1975)
- El-Dossoki FI, J. Solution Chem., 39(9), 1311 (2010)
- Roy S, Mahali K, Akhter S, Dolui BK, Asian J. Chem., 25(12), 6661 (2013)
- Reading JF, Watson ID, Hedwig GR, J. Chem.Thermodyn., 22(2), 159 (1990)
- Abualreish MJ, Noubigh A, Can. J. Chem (2019).
- Noubigh A, Akremi A, J. Mol. Liq., 274, 752 (2019)
- Noubigh A, Abderrabba M, Provost E, J. Iran. Chem. Soc., 6(1), 168 (2009)
- Noubigh A, Abderrabba M, J. Mol. Liq., 223, 261 (2016)
- Noubigh A, Akrmi A, J. Mol. Liq., 220, 277 (2016)
- Bowden NA, Sanders JPM, Bruins ME, J. Chem. Eng. Data, 63(3), 488 (2018)
- Hayashi K, Matsuda T, Takeyama T, Hino T, Biosci. Biotechnol. Biochem., 30(4), 378 (1966)
- Liu Y, Wang Y, Liu YM, Xu SJ, Chen MY, Du SC, Gong JB, J. Chem. Thermodyn., 105, 1 (2017)
- Noubigh A, Mgaidi A, Abderrabba M, Provost E, Furst W, J. Sci. Food Agr., 87(5), 738 (2007)
- Eisen EO, Joffe J, J. Chem. Eng. Data, 11(4), 480 (1966)
- Gomis V, Ruiz F, Devera G, Lopez E, Saquete MD, Fluid Phase Equilib., 98, 141 (1994)
- Mullin JW, Crystallization. 3rd ed., Butterworth-Heinemann, Oxford, 2000.
- Jing DD, Wang JK, Wang YL, J. Chem. Eng. Data, 55(1), 508 (2010)
- Mendonca AFSS, Formigo DTR, Lampreia IMS, J. Solution Chem., 31(8), 653 (2002)
- Hossain A, Roy S, J. Mol. Liq., 249, 1133 (2018)
- Imran S, Hossain A, Mahali K, Roy AS, Guin PS, Roy S, J. Mol. Liq., 265, 693 (2018)
- Das P, Chatterjee S, Basumallick I, J. Chin. Chem. Soc., 51(1), 1 (2004)
- Bretti C, Cigala RM, Giuffre O, Lando G, Sammartano S, Fluid Phase Equilib., 459, 51 (2018)
- Carta R, Tola G, J. Chem. Eng. Data, 41(3), 414 (1996)
- Noubigh A, Abderrabba M, Provost E, J. Chem. Thermodyn., 39(2), 297 (2007)