화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.522, No.1, 151-156, 2020
Alternate expression of PEPT1 and PEPT2 in epidermal differentiation is required for NOD2 immune responses by bacteria-derived muramyl dipeptide
Peptide transporters 1 and 2 (PEPT1 and PEPT2) are proton-coupled oligopeptide transporter members of the solute carrier 15 family and play a role in the cellular uptake of di/tri-peptides and peptidomimetics. Our previous work showed that PEPT2 is predominantly expressed within undifferentiated keratinocytes. Here we show that PEPT2 expression decreases as keratinocyte differentiation progresses and that PEPT1 alternately is expressed at later stages. Absolute quantification using quantitative polymerase chain reaction revealed that the expression level of PEPT1 is about 17 times greater than that of PEPT2. Immunohistochemical study of human skin provided evidence of PEPT1 in the epidermis. The uptake of glycylsarcosine into keratinocytes was significantly blocked by PEPT inhibitors, including nateglinide and glibenclamide. Moreover, we found that PEPT1 knockdown in differentiated keratinocytes significantly suppressed the influence of a bacterial-derived peptide, muramyl dipeptide (MDP), on the production of proinflammatory cytokine interleukin-8, implying that bacteria-derived oligopeptides can be transported by PEPT1 in advanced differentiated keratinocytes. Taken together, PEPT1 and PEPT2 may concertedly play an important role in MDP-NOD2 signaling in the epidermis, which provides new insight into the mechanisms of skin homeostasis against microbial pathogens. (C) 2019 Elsevier Inc. All rights reserved.