Canadian Journal of Chemical Engineering, Vol.98, No.2, 441-452, 2020
Rigorous correlations for predicting the solubility of H2S in methylimidazolium-based ionic liquids
Two general and simple models, a group contribution correlation (model I) and an empirical relation (model II), were proposed to predict the solubility of H2S in methylimidazolium based ionic liquids (ILs) over wide range of temperatures (303.15-363.15 K) and pressures (60.8-2016.8 kPa). The constants of the suggested functionality relations were found via the Nelder-Mead simplex algorithm. Both correlations were trained with 407 data points of H2S solubility in 9 methylimidazolium based ILs and tested through 121 H2S solubility data points of 3 different methylimidazolium based ILs to ensure generality. A comprehensive statistical evaluation showed that both suggested correlations are vigorous and have satisfactory error trends. The dataset was subjected to a statistical outlier diagnostic test and the validity of the database was confirmed. In addition, the sensitivity analysis revealed that the experimental data and both models have the same responses toward pressure and temperature, which indicates the reliability of the proposed correlations.