화학공학소재연구정보센터
Current Applied Physics, Vol.20, No.2, 304-309, 2020
Synthesis of NiCo2S4 nanospheres/reduced graphene oxide composite as electrode material for supercapacitor
The NiCo2S4 nanospheres arrayed on the surface of reduced graphene oxide (rGO) was fabricated via one-step hydrothermal method. The effect of initial feeding mass of Ni(NO3)(2)center dot 6H(2)O and Co(NO3)(2)center dot 6H(2)O to rGO on the microstructure and electrochemical performance of the as-prepared composites was studied. The results indicated that the specific capacitances of the composites were first increased and then reduced due to the aggregation of NiCo2S4 nanospheres. NiCo2S4 nanospheres/rGO composites exhibited a remarkable specific capacitance of 1406 F/g and excellent cyclic stability of 82.36% at the current density of 1 A/g, which were better than those of individual NiCo2S4 (792 F/g and 64.77%) counterpart. These results showed that the as-prepared NiCo2S4 nanospheres/rGO composites were outstanding candidate for electrode material of supercapacitors.