Journal of Bioscience and Bioengineering, Vol.128, No.5, 558-563, 2019
Survival of membrane-damaged Escherichia coli in a cytosol-mimicking solution
Selective permeability of cell membrane is critically important for cell survival. The damage caused to cell membrane by pore-forming antimicrobial peptides may result in the loss of selective permeability and leakage of intracellular molecules, eventually leading to cell death. Here, we examined whether the membrane-damaged Escherichia coli cells survive in a cytosol-mimicking solution (CMS), which compensates for the lethal leakage of intracellular molecules. We prepared a CMS comprising 34 low molecular weight compounds from the cytosol and found that the cells were able to grow in CMS even in the presence of a pore-forming peptide, melittin. We confirmed that the melittin-treated cells lost selective membrane permeability by staining with membrane-impermeable dyes, propidium iodide and SYTOX green. Some stained cells maintained the colony formation ability in CMS. These results provide an evidence that E. coli cells can at least partially survive in the CMS even after the temporary impairment of membrane selective permeability. This study demonstrates a technique that allows temporal loss of the selective permeability of the cell membrane while maintaining the viability of cells that may be useful for the introduction of membrane-impermeable molecules into E. con cells. (C) 2019, The Society for Biotechnology, Japan. All rights reserved.
Keywords:Escherichia coli;Cell membrane;Membrane permeability;Membrane integrity;Melittin;Artificial cytosol