Journal of Colloid and Interface Science, Vol.558, 38-46, 2020
Three dimensional Pt island-on-Au architectures coupled with graphite carbon nitride nanosheets for effective photo-accelerated methanol electro-oxidation
Two dimensional (2D) visible-light-activated graphite carbon nitride (CN) nanosheets were used to deposit the traditional electrocatalyst of Pt and Au through a facile one-pot hydrothermal approach. By adjusting different amount of Pt and Au, 3D Pt island-on-Au architectures were formed on the surface of CN nanosheets (Pt-Au/CN). The obtained Pt-Au/CN composite was used for electrocatalytic methanol oxidation reaction (MOR). Comparing with Pt/CN modified electrode, Pt-Au/CN exhibited 13.8 times enhancement on the electrocatalytic activity of MOR. Interestingly, when Pt-Au/CN composite was illuminated with visible light, the current density and stability were continuously enhanced by evaluating of cyclic voltammetry (CV), chronopoenttiometric (CP), chronoamperometry (CA), and electrochemical impedance spectra (EIS). The bimetallic electronic effects of Pt and Au; 3D Pt islands-on-Au architectures; 2D support nanosheet of CN, and the synergistic effect of photo- and electro-catalytic processes resulted in the improved electrocatalytic activity and stability. The present investigations provide a promising future to construct highly efficient electrocatalyst by combining bimetal on semiconductor support and with the assistance of visible light irradiation. (C) 2019 Elsevier Inc. All rights reserved.
Keywords:Pt island-on-Au architectures;g-C3N4 nanosheets;Methanol oxidation;Photo-accelerated electrocatlysis;Visible light