Journal of Physical Chemistry A, Vol.124, No.3, 582-590, 2020
Aqueous-Phase Conformations of Lactose, Maltose, and Sucrose and the Assessment of Low-Cost DFT Methods with the DSCONF Set of Conformers for the Three Disaccharides
In the present study, we have examined a range of quantum chemistry methods for the calculation of conformers for lactose, maltose, and sucrose. We find that the DSD-PBE-P86/aug'-cc-pVTZ//B3-LYP-D3BJ/6-311+G(2d,p) protocol yields good relative energies in comparison with reference CCSD(T)/CBS//B3-LYP-D3BJ/maug-cc-pVTZ values. We have surveyed a total of similar to 50 conformers for the three disaccharides with the chosen DSD-PBE-P86 method in conjunction with continuum aqueous solvation. In each case, the lowest free energy conformer is characterized by hydrogen bond(s) between the two rings. Another finding is that the major contributors to the overall variations in aqueous free energies are the electronic energies and the solvation energies. To facilitate investigations of larger systems, we have compiled the DSCONF set of conformers for the three disaccharides, and we have assessed lower cost methods with this set. We find MS1-D3/6-31+G(2d,p) to be cost-effective and accurate for both geometry optimization and the calculation of relative energies for disaccharides. In addition, we note that MS1-D3 has previously been found to yield good relative energies for the WATER27 set of water clusters. We thus deem this method to be appropriate for the study of saccharide conformations in both gas phase and aqueous solution.