화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.142, No.2, 1029-1037, 2020
Conformational Control in Main Group Phosphazane Anion Receptors and Transporters
Anion binding by receptor molecules is a central field of modern chemistry which impacts areas of catalysis as well as biological and materials chemistry. As binding often requires high chemical stability under aerobic and aqueous conditions for practical applications, carbon-based anion receptors have dominated this field, with main group element analogues receiving far less attention. The recent observation that the air- and moisture-stable amino-cyclophosph(V)azanes of the type [RN(E)P(mu-NR)](2) (E = O, S, Se) can exhibit halide binding that is competitive with topologically related organic receptors (such as squaramides and thioureas) has motivated us here to explore how the binding properties of phosphazane receptors can be enhanced further. Coordination of transition metals by the two P,N metal coordination sites of the phosph(III)azane dimer [(2-py)NHP(mu-N(t)B3)](2) not only activates the receptor for anion binding (by fixing the optimum exo-exo conformation and polarizing the endocyclic N-H substituents) but also stabilizes the P2N2 ring to hydrolysis and oxidation. We show how the binding properties of these receptors can be modulated by the coordinated metal fragments and that they can bind chloride 1 to 2 orders of magnitude stronger than the related squaramides and thioureas. These features can be utilized in anion transport through phospholipid bilayers under aqueous conditions for which transport can be improved by 1 order of magnitude compared to the previous best phosphazane and thiourea transporters. This study demonstrates how careful design of inorganic systems can result in potent supramolecular functionality, beyond that observed for organic counterparts.