화학공학소재연구정보센터
Langmuir, Vol.35, No.49, 16172-16184, 2019
Understanding the Behavior of Monocationic and Dicationic Room-Temperature Ionic Liquids through Resonance Energy-Transfer Studies
The present work has been undertaken with an objective to understand the differences in the local structural organization of imidazolium-based monocationic ionic liquids (MILs) and dicationic ionic liquids (DILs) through resonance energy-transfer (RET) studies. In this study, a neat IL is used as a donor and a charged species rhodamine 6G (R6G) is used as an acceptor unit because of the fact that they satisfy the spectroscopic criteria that are needed for an RET event to take place. Additionally, R6G, being a charged species, is expected to facilitate the electrostatic interactions with the ILs which are also charged. Specifically, two imidazolium-based germinal DILs and their monocationic counterparts are used for the present investigations. Additionally, the studies are carried out in some selected MILs where the lengths of the alkyl side chains are kept unchanged for MILs and DILs. Interestingly, the present data reveal that the RET interaction is more favorable for DILs than for MILs, even though the DILs are relatively bulkier than their monocationic counterparts. More interestingly, the RET interaction is also found to be more favorable for DILs than for MILs, where the length of the alkyl group is kept fixed for MILs and DILs. The result of the present study delineates that the alkyl chain length on the cation is not the sole factor contributing to the RET outcomes for DILs and MILs but the local structure of DILs also contributes significantly to the same. The current investigation clearly indicates that DILs have a more compact local structure than that of MILs. Essentially, the current study highlights that a cost-effective, noninvasive technique such as RET is quite effective in capturing the differences in the nanostructural organization of MILs and DILs.