Reviews in Chemical Engineering, Vol.36, No.2, 237-263, 2020
Membrane-based zero-sludge palm oil mill plant
The palm oil industry is one of the most important agro-industries for tropical countries because of the unique properties and wide range of uses of palm oil for various end products. In a palm oil extraction process, a large quantity of water is required, of which half the quantity will end up as effluent. This palm oil mill effluent (POME) has an extremely high content of organic-matter, which can cause severe pollution of waterways and other environmental problems. Disposal of this highly polluting effluent has become a major problem for the palm oil mills. Therefore, several methods have been proposed either to treat the POME so it could comply with environmental regulation while discharged or to recover water and other valuable components from the effluent. Membrane technology has emerged as a feasible-alternative to conventional treatment in vegetable oil processing because of its attractive features such as low energy consumption, reduction in the number of processing steps, high separation efficiency, and improvement of the final product quality. In the case of POME treatment, an integrated membrane-based process promises efficient water recycling and total solid recovery from the effluent, thus eliminating the environmental problem. Recently, a novel concept combining oil-oil extraction and continuous filtration using a superhydrophobic membrane has been proposed to achieve a zero-sludge palm oil mill. In this concept, the huge wastewater effluent generated from the conventional process can be eliminated and the palm oil milling process simplified. Furthermore, the superhydrophobic membrane enables the production of highpurity palm oil. In this paper, we review the prospect of a zero-sludge palm oil mill concept and strategies to achieve the proposed concept. In addition, we also highlight the development of the superhydrophobic membrane and phytonutrient recovery.