Journal of Industrial and Engineering Chemistry, Vol.83, 20-28, March, 2020
Polyethyleneimine-functionalized phenolphthalein-based cardo poly (ether ether ketone) membrane for CO2 separation
E-mail:
Phenolphthalein-based cardo poly(ether ether ketone) (PEEKWC)/polyethyleneimine (PEI) crosslinking membranes were prepared by solution casting followed by solution reaction at room temperature. The effects of reaction time and PEI content on the membrane structure and gas separation performances were investigated. Light transmittance measure and AFM evidenced the relationship between the microphase separation in PEEKWC-PEI membranes and reaction time. The CO2 permeability increased with the PEI content, while the N2 and CH4 permeability remained nearly constant. This result indicated that only CO2 was transported by the solution.diffusion mechanism and also that PEI exhibited a positive contribution as a fixed carrier for CO2 facilitated transport. Meanwhile the PEEKWC-PEI crosslinking membranes showed higher selectivities than the pure PEEKWC membrane. The highest CO2/N2 and CO2/ CH4 selectivities were about 131 and 122 increasing from 33 and 30, respectively. The crosslinking structure of membranes improved the CO2 permeability stability.
- Lively DSR, Nature, 523, 435 (2016)
- Baker RW, Low BT, Macromolecules, 47(20), 6999 (2014)
- Simmons AJ, Berrisford P, Dee DP, Hersbach H, Hirahara S, Thepaut JN, QJR Meteorol. Soc. 143, 101 (2017).
- Mumford KA, Smith KH, Anderson CJ, Shen S, Tao W, Suryaputradinata YA, Qader A, Hooper B, Innocenzi RA, Kentish SE, Stevens GW, Energy Fuels, 26, 138 (2011)
- Lo AY, Chow AT, Clim. Change, 131, 335 (2015)
- Liu SL, Shao L, Chua ML, Lau CH, Wang H, Quan S, Prog. Polym. Sci., 38, 1089 (2013)
- Lin H, Science, 311, 639 (2006)
- Park HB, Kamcev J, Robeson LM, Elimelech M, Freeman BD, Science, 356 (2017)
- Robeson LM, J. Membr. Sci., 62, 165 (1991)
- Robeson LM, J. Membr. Sci., 320(1-2), 390 (2008)
- Zhang XF, Hou T, Chen J, Feng Y, Li B, Gu X, He M, Yao J, ACS Appl. Mater. Interfaces, 10, 24930 (2018)
- Li Y, Xin Q, Wu H, Guo R, Tian Z, Liu Y, Wang S, He G, Pan F, Jiang Z, Energy Environ. Sci., 7, 1489 (2014)
- Zhang CF, Zhang WH, Gao H, Bai YX, Sun YP, Chen YS, J. Membr. Sci., 528, 72 (2017)
- Kasahara S, Kamio E, Shaikh AR, Matsuki T, Matsuyama H, J. Membr. Sci., 503, 148 (2016)
- Tong Z, Ho WSW, Sep. Sci. Technol., 52, 156 (2016)
- Li FS, Qiu W, Lively RP, Lee JS, Rownaghi AA, Koros WJ, ChemSusChem, 6, 1216 (2013)
- Mondal A, Mandal B, J. Membr. Sci., 460, 126 (2014)
- Xin QP, Wu H, Jiang ZY, Li YF, Wang SF, Li Q, Li XQ, Lu X, Cao XZ, Yang J, J. Membr. Sci., 467, 23 (2014)
- Ben Hamouda S, Nguyen QT, Langevin D, Roudesli S, C. R. Chim., 13, 372 (2010)
- Wang ZG, Chen TL, Xu JP, J. Appl. Polym. Sci., 64(9), 1725 (1997)
- Buonomenna MG, Figoli A, Jansen JC, Drioli E, J. Appl. Polym. Sci., 92(1), 576 (2004)
- Jansen JC, Buonomenna MG, Figoli A, Drioli E, Desalination, 193(1-3), 58 (2006)
- Jansen JC, Drioli E, Polym. Sci. A, 51, 1355 (2009)
- Chen G, Zhang X, Zhang S, Chen T, Wu Y, J. Appl. Polym. Sci., 160, 2808 (2007)
- Wang ZG, Chen TL, Xu JP, J. Appl. Polym. Sci., 83(4), 791 (2002)
- Wang T, Yu Y, Chen D, Wang S, Zhang X, Li Y, Zhang J, Fu Y, Nanoscale, 9, 1925 (2017)
- Yu Y, Wang Y, Li T, Liang W, Li C, Niu W, Gao L, RSC Adv., 7, 42468 (2017)
- Davidov-Pardo G, McClements DJ, Trends Food Sci. Technol., 38, 88 (2014)
- Huang YF, Chian YW, Ruan J, Jin S, Jeong KU, Tang HY, Su AC, Polymer, 52(18), 4114 (2011)
- Jiang X, Li S, Shao L, Energy Environ. Sci., 10, 1339 (2017)
- Zou J, Ho WSW, J. Membr. Sci., 286(1-2), 310 (2006)
- Li KM, Jiang JG, Yan F, Tian SC, Chen XJ, Appl. Energy, 136, 750 (2014)
- Noble RD, Koval CA, Rev. Facil. Transp. Membr., 411 (2006).
- Sanders DE, Smith ZP, Guo RL, Robeson LM, McGrath JE, Paul DR, Freeman BD, Polymer, 54(18), 4729 (2013)
- Liao J, Wang Z, Gao C, Li S, Qiao Z, Wang M, Zhao S, Xie X, Wang J, Wang S, Chem. Sci., 5, 2843 (2014)
- Qiu WL, Chen CC, Xu LR, Cui LL, Paul DR, Koros WJ, Macromolecules, 44(15), 6046 (2011)