화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.83, 136-144, March, 2020
Carbon electrodes with ionic functional groups for enhanced capacitive deionization performance
E-mail:,
Capacitive deionization (CDI) has proved to be a clean and green technology; however, the charge leakage in the electrode pores during the adsorption-desorption cycles lowers the desalination efficiency. In this work, commercially available activated carbon was chemically treated to give the activated carbon surface either immobilized amino groups or sulfonic acid groups. The amino group-containing and sulfonic group-containing carbon materials were used as anode and cathode electrodes, respectively, in assembling a CDI (AC-CDI) cell. The salt adsorption capacity, salt removal efficiency, and charge efficiency of the AC-CDI cell were over two times higher than those of the untreated carbon-based CDI cell and comparable with those of the membrane CDI (MCDI) cell. The greatly improved desalination performance of the AC-CDI cell was attributed to enhanced wettability, faster diffusion of counter ions to each electrode via electrostatic attraction, and the prevention of re-adsorption of ions via repulsion between the charged layers and co-ions during adsorption-desorption cycle. Thus, it can be concluded that chemically modified carbon-based CDI cell is highly promising for practical application.
  1. United nations, UN Water, water facts, http://www.unwater.org/water-facts/scarcity/.
  2. Gleick PH, Water in Crisis: A Guide to The World’s Fresh Water Resources, Oxford University Press, Inc., Oxford. U.K, 1993.
  3. Subramani A, Jacangelo JG, Water Res., 75, 164 (2015)
  4. Suss ME, Porada S, Sun X, Biesheuvel PM, Yoon J, Presser V, Energy Environ. Sci., 8, 2296 (2015)
  5. Porada S, Zhao R, van der Wal A, Presser V, Biesheuvel PM, Progress Mater. Sci., 58, 1388 (2013)
  6. Zou L, Morris G, Qi D, Desalination, 225(1-3), 329 (2008)
  7. Anderson MA, Cudero AL, Palma J, Electrochim. Acta, 55(12), 3845 (2010)
  8. Oren Y, Desalination, 228(1-3), 10 (2008)
  9. Biesheuvel PM, van der Wal A, J. Membr. Sci., 346(2), 256 (2010)
  10. Zhang C, He D, Ma J, Tang W, Waite TD, Water Res., 128, 314 (2018)
  11. ul Haq O, Choi JH, Lee YS, React. Funct. Polym., 132, 36 (2018)
  12. Kim YJ, Choi JH, Water Res., 44, 990 (2010)
  13. Choi JH, Sep. Purif. Technol., 70(3), 362 (2010)
  14. Li H, Pan L, Nie C, Liu Y, Sun Z, J. Mater. Chem., 22, 15556 (2012)
  15. Alencherry T, Naveen AR, Ghosh S, Daniel J, Venkataraghavan R, Desalination, 415, 14 (2017)
  16. Wang H, Shi L, Yan T, Zhang J, Zhong Q, Zhang D, J. Mater. Chem. A, 2, 4739 (2014)
  17. Wang G, Pan C, Wang LP, Dong Q, Yu C, Zhao ZB, Qiu JS, Electrochim. Acta, 69, 65 (2012)
  18. Zhang L, Liu Y, Lu T, Pan LK, J. Electroanal. Chem., 804, 179 (2017)
  19. Xu P, Drewes JE, Heil D, Wang G, Water Res., 42, 2605 (2008)
  20. Liu Y, Nie C, Pan L, Xu X, Sun Z, Chua DHC, Inorg. Chem. Front., 1, 249 (2014)
  21. Oh HJ, Lee JH, Ahn HJ, Jeong Y, Kim YJ, Chi CS, Thin Solid Films, 515(1), 220 (2006)
  22. Laxman K, Myint MTZ, Bourdoucen H, Dutta J, ACS Appl. Mater. Interfaces, 6, 10113 (2014)
  23. Li HB, Pan LK, Zhang YP, Zou LD, Sun CQ, Zhan YK, Sun Z, Chem. Phys. Lett., 485(1-3), 161 (2010)
  24. Nie CY, Pan LK, Liu Y, Li HB, Chen TQ, Lu T, Sun Z, Electrochim. Acta, 66, 106 (2012)
  25. Peng Z, Zhang D, Shi L, Yan T, J. Mater. Chem., 22, 6603 (2012)
  26. Zhang D, Wen X, Shi L, Yan T, Zhang J, Nanoscale, 4, 5440 (2012)
  27. Li H, Lu T, Pan L, Zhang Y, Sun Z, J. Mater. Chem., 19, 6773 (2009)
  28. Zhu Y, Zeng GM, Zhang Y, Tang L, Chen J, Cheng M, Zhang LH, He L, Guo Y, He XX, Lai MY, He YI, Analyst, 139, 5014 (2014)
  29. Zeng G, Zhu Y, Zhang Y, Zhang C, Tang L, Guo P, Zhang L, Yuan Y, Chengab M, Yangab C, Environ. Sci., 3, 1504 (2016)
  30. Porada S, Borchardt L, Oschatz M, Bryjak M, Atchison JS, Keesman KJ, Kaskel S, Biesheuvel PM, Presser V, Energy Environ. Sci., 6, 3700 (2013)
  31. Yang J, Zou LD, Choudhury NR, Electrochim. Acta, 91, 11 (2013)
  32. Gao X, Omosebi A, Landon K, Liu K, Electrochem. Commun., 39, 22 (2014)
  33. Min BH, Choi JH, Jung KY, Electrochim. Acta, 270, 543 (2018)
  34. Zornitta RL, Garcia-Mateos FJ, Lado JJ, Rodriguez-Mirasol J, Cordero T, Hammer P, Ruotolo LAM, Carbon, 123, 318 (2017)
  35. Shafeeyan MS, Daud WMAW, Houshmand A, Shamiri A, J. Anal Appl. Pyrolysis, 89, 143 (2010)
  36. Konwar LJ, Maki-Arvela P, Salminen E, Kumar N, Thakur AJ, Mikkola JP, Deka D, Appl. Catal. B: Environ., 176-177, 20 (2015)
  37. Gu Q, Jia Z, React. Funct. Polym., 73, 114 (2013)
  38. Wang Y, Wang D, Tan M, Jiang B, Zheng J, Tsubaki N, Wu M, ACS Appl. Mater. Interfaces, 7, 26767 (2015)
  39. Wen P, Gong P, Mi Y, Wang J, Yang S, RSC Adv., 4, 35914 (2014)
  40. Hsieh CT, Teng H, Carbon, 40, 667 (2002)
  41. Gao X, Omosebi A, Landon J, Liu K, Energy Environ. Sci., 8, 897 (2015)
  42. Wei L, Yushin G, Nano Energy, 1, 552 (2012)
  43. Lado JJ, Zornitta RL, Calvi FA, Tejedor-Tejedor MI, Anderson MA, Ruotolo LAM, J. Anal. Appl. Pyrolysis, 120, 389 (2016)
  44. Gao X, Omosebi A, Landon J, Liu K, Environ. Sci. Technol., 49, 10920 (2015)
  45. Rasines G, Lavela P, Macias C, Haro M, Ania CO, Tirado JL, J. Electroanal. Chem., 671, 92 (2012)
  46. Cha JH, Haq OU, Choi JH, Lee YS, Macromol. Res., 26(13), 1273 (2018)
  47. Tang W, He D, Zhang C, Kovalsky P, Waite TD, Water Res., 120, 229 (2017)