화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.83, 208-213, March, 2020
Sensitive and selective detection of 4-aminophenol in the presence of acetaminophen using gold.silver core.shell nanoparticles embedded in silica nanostructures
E-mail:
Toxic 4-aminophenol (4-AP) can be considered as a primary impurity during the synthesis and/or storage of N-acetyl-para-aminophenol (APAP). In this study, 4-AP was sensitively and selectively detected in the presence of APAP using a gold.silver core-shell nanoparticle-embedded silica nanostructure (SiO2@Au@Ag). First, approximately 200 nm of SiO2@Au@Ag were successfully prepared based on the Au-seed (3 nm) mediated growth of Ag on the surface of SiO2 NP. Upon the incubation of 4-AP with SiO2@Au@Ag nanoparticles (NPs), the surface-enhanced Raman spectroscopy (SERS) intensity of 4-AP at 1591 cm-1 increased proportionally in accordance with an increase in the concentration of 4-AP in the range of 0-800 μM, with a detection limit of 3.5 ppm. In addition, the APAP did not exhibit a significant Raman signal at high concentrations (5 mM) and under the NP incubation condition. In the presence of 1 mM, 3 mM, and 5 mM of APAP, 4-AP was detected using SiO2@Au@Ag NPs within the rangeof 200-1000 mM, although the slopes decreased from 0.083 cps/mM to 0.059 cps/μM, 0.068 cps/μM, and 0.035 cps/ μM, respectively. This study provides a method for the detection of 4-AP in the presence of APAP by using SiO2@Au@Ag for impurity detection in the pharmaceutical field.
  1. Yesilada A, Erdogan H, Ertan M, Anal. Lett., 24, 129 (1991)
  2. Bessems JGM, Vermeulen NPE, Crit. Rev. Toxicol., 31, 55 (2001)
  3. De Bleye C, et al., Talanta, 116, 899 (2013)
  4. De Bleye C, et al., J. Pharm. Biomed. Anal., 90, 111 (2014)
  5. Wang H, et al., Talanta, 178, 188 (2018)
  6. Garcı’a A, et al., J. Chromatogr. B, 785, 237 (2003)
  7. Aukunuru JV, Kompella UB, Betageri GV, J. Liq. Chromatogr. Relat. Technol., 23, 565 (2000)
  8. Monser L, Darghouth F, J. Pharm. Biomed. Anal., 27, 851 (2002)
  9. Perez-Ruiz T, et al., J. Pharm. Biomed. Anal., 38, 87 (2005)
  10. Nemeth T, et al., J. Pharm. Biomed. Anal., 47, 746 (2008)
  11. Bloomfield MS, Talanta, 58, 1301 (2002)
  12. Wyszecka-Kaszuba E, Warowna-Grzeskiewicz M, Fijałek Z, J. Pharm. Biomed. Anal., 32, 1081 (2003)
  13. Zheng M, et al., J. Sep. Sci., 34, 2072 (2011)
  14. Chen G, et al., J. Pharm. Biomed. Anal., 29, 843 (2002)
  15. Chu Q, et al., Anal. Chim. Acta., 606, 246 (2008)
  16. Liu AL, Wang K, Chen W, Gao F, Cai YS, Lin XH, Chen YZ, Xia XH, Electrochim. Acta, 63, 161 (2012)
  17. Mohamed FA, AbdAllah MA, Shammat SM, Talanta, 44, 61 (1997)
  18. Bakeeva RF, et al., Pharm. Chem. J., 44, 282 (2010)
  19. Dejaegher B, et al., Talanta, 75, 258 (2008)
  20. Sun F, et al., Trends Anal. Chem., 29, 1239 (2010)
  21. Zheng J, He L, Compr. Rev. Food Sci. Food Saf., 13, 317 (2014)
  22. Schlucker S, Angew. Chem.-Int. Edit., 53, 4756 (2014)
  23. Wang YQ, Yan B, Chen LX, Chem. Rev., 113(3), 1391 (2013)
  24. Culha M, et al., Nanotechnology, 2012, 15 (2012)
  25. Jun BH, et al., Bull. Korean Chem. Soc., 36, 963 (2015)
  26. Goodacre R, Graham D, Faulds K, Trends Anal. Chem., 102, 359 (2018)
  27. Dies H, et al., Sensors, 18, 2726 (2018)
  28. Cailletaud J, et al., J. Pharm. Biomed. Anal., 147, 458 (2018)
  29. Izquierdo-Lorenzo I, Sanchez-Cortes S, Garcia-Ramos JV, Langmuir, 26(18), 14663 (2010)
  30. Izquierdo-Lorenzo I, Sanchez-Cortes S, Garcia-Ramos JV, Anal. Methods, 3, 1540 (2011)
  31. Izquierdo-Lorenzo I, Alda I, Sanchez-Cortes S, Garcia-Ramos JV, Langmuir, 28(24), 8891 (2012)
  32. Izquierdo-Lorenzo I, Garcia-Ramos JV, Sanchez-Cortes S, J. Raman Spectrosc., 44, 1422 (2013)
  33. Pham XH, et al., RSC Adv., 7, 7015 (2017)
  34. Shim S, et al., RSC Adv., 6, 48644 (2016)
  35. Bong-Hyun J, et al., Bull. Korean Chem. Soc., 36, 963 (2015)
  36. Pham XH, et al., Sci. Rep., 8, 6290 (2018)
  37. Pham XH, et al., J. Alloy. Compd., 779, 360 (2019)
  38. Pham XH, et al., Int. J. Mol. Sci., 20, 1258 (2019)
  39. Pham XH, et al., Int. J. Mol. Sci., 20, 4841 (2019)
  40. Zhou Q, et al., Anal. Methods, 6, 4625 (2014)
  41. Stober W, Fink A, Bohn E, J. Colloid Interface Sci., 26, 62 (1968)
  42. Hernandez B, et al., J. Raman Spectrosc., 44, 827 (2013)
  43. Chao K, et al., Sensors, 17, 618 (2017)
  44. Dong B, et al., J. Raman Spectrosc., 42, 1205 (2011)
  45. Dong B, Fang YR, Chen XW, Xu HX, Sun MT, Langmuir, 27(17), 10677 (2011)
  46. Fang YR, Li YZ, Xu HX, Sun MT, Langmuir, 26(11), 7737 (2010)
  47. Liang X, et al., Phys. Chem. Chem. Phys., 17, 10176 (2015)
  48. Moynihan HA, O’ Hare IP, Int. J. Pharm., 247, 179 (2002)
  49. Muniz-Miranda M, Appl. Catal. B: Environ., 146, 147 (2014)
  50. Hegedus ZL, Nayak U, Arch. Int. Physiol. Biochim. Biophys., 99, 99 (1991)
  51. Rosenberg D, et al., World J. Chem. Educ., 6, 63 (2018)
  52. Ling X, et al., Small, 8, 1365 (2012)
  53. Otto A, J. Raman Spectrosc., 36, 497 (2005)
  54. Demirel G, et al., J. Mater. Chem. C, 6, 5314 (2018)