화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.83, 271-278, March, 2020
A copper complex based catalytic conversion and isolation of carbonate from CO2 for the carbon sequestration process
E-mail:
The conversion of CO2 into value-added chemicals of industrial significance is of great interest due to global warming-related concerns and the depletion of natural resources. This paper describes a mononuclear copper complex with an N3S coordination environment that can catalyze the conversion of CO2 into the carbonate anion with an ambient O2. Electrochemical studies indicate that the N3S-ligated Cu(II) complex can be reduced to Cu(I), which can subsequently generate the carbonate anion from CO2 and ambient O2. In presence of LiClO4 when the N3S-ligated complex Cu(II) is reduced to Cu(I), the complex easily releases the carbonate anion which easily precipitates as Li2CO3 in CH3CN. These studies suggest that the N3S-ligated Cu(II)/(I) complexes can be used to convert CO2 to carbonate and isolate the generated carbonate.
  1. (a) Branden CI, Schneider G, Reduction in Biological, Model Systems, Oxford University Press, New York, 1994; (b) Tappe NA, Reich RM, D’Elia V, Kuhn FE, Dalton Trans., 47, 13281 (2018).
  2. (a) Dabral S, Schaub T, Adv. Synth. Catal., 361, 223 (2019); (b) Yua B, Zoua B, Hua CW, Journal of CO₂ Utilization, 26, 314 (2018); (c) Yu B, He LN, Chem. Sus. Chem, 8, 52 (2015); (d) Cao Y, He X, Wang N, Li H, He LN, Chin. J. Chem.. 36. 644 (2018).
  3. (a) Song CS, Catal. Today., 115, 2 (2006); (b) Takeda H, Cometto C, Ishitani O, Robert M, ACS Catal., 7, 70 (2017).
  4. (a) Artz J, Muller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, Bardow A, Leitner W, Chem. Rev, 118, 434 (2018); (b) Yadav N, Seidi F, Crespy D, D’Elia V, Chem. Sus. Chem, 12, 724 (2019).
  5. (a) Moret S, Dyson PJ, Laurenczy G, Nat. Commun, 5, 4017 (2014); (b) Ogo S, Kabe R, Hayashi H, Harada R, Fukuzumi S, DaltonTrans., 4657 (2006); (c) Lu SM, Wang ZJ, Li J, Xiao JL, Li C, Green Chem., 18, 4553 (2016).
  6. (a) Bond GM, McPherson BJ, Abel A, Lichtner P, Grigg R, Liu N, Stringer J, Proceedings of the Second National Conference on Carbon Sequestration, Alexandria, VA, 2003 May 5; (b) Sivanesan D, Bhatti UH, Youn MH, Park KT, Kim HJ, Grace AN, Choi SH, Jeong SK, ACS Sustainable Chem. Eng., 7, 11955 (2019).
  7. Blencoe JG, Anovitz LM, Palmer DA, Beard JS, Proceedings of the Second National Conference on Carbon Sequestration, DOE NETL, Alexandria, VA, 2003 May 5-8, 2003.
  8. Goldberg P, Chen ZY, O’Connor W, Walters R, Ziock H, Proceedings of the First National Conference on Carbon Sequestration, DOE NETL, Washington, DC, 2001 May 14-17, 2001.
  9. LACKNER KS, WENDY CH, BUTT DP, JOYCE EL, SHARP DH, Energy, 20(11), 1153 (1995)
  10. Wright J, Colling A, Properties and Behavior, 2nd edition, Pergamon-Elsevier, Oxford, 1995.
  11. (a) Lippert CA, Liu K, Sarma M, Parkin SR, Remias JE, Brandewie CM, Odom SA, Liu K, Catal. Sci. Technol, 4, 3620 (2014); (b) Sivanesan D, Choi Y, Lee J, Youn MH, Park KT, Grace AN, Kim HJ, Jeong SK, Chem. Sus. Chem., 8, 3977 (2015); (c) Bhatti UH, Shah AK, Kim JN, You JK, Choi SH, Lim DH, Nam S, Park YH, Baek IH, ACS Sustainable Chem. Eng., 5, 5862 (2017); (d) Choi YC, Sivanesan D, Lee J, Youn MH, Park KT, Kim HJ, Grace AN, Kim IH, Jeong SK, J. Ind. Eng. Chem., 34, 76 (2016).
  12. (a) Sivanesan D, Kim YE, Youn MH, Park KT, Kim HJ, Grace AN, Jeong SK, RSC Adv, 6, 64575 (2016); (b) Sivanesan D, Park KT, Lee JY, Park IG, Jeong SK, J. Ind. Eng. Chem., 68, 335 (2018); (c) Sivanesan D, Youn MH, Murnandari A, Kang JM, Park KT, Kim HJ, Jeong SK, J. Ind. Eng. Chem., 52, 287 (2017).
  13. (a) Zhao Z, Kong X, Yuan Q, Xie H, Yang D, Zhao J, Fan H, Jiang L, Phys. Chem. Chem. Phys, 20, 19314 (2018); (b) Vaid TP, Kelley SP, Rogers RD, Dalton Trans., 46, 8920 (2017).
  14. Garcia-Espana E, Gavina P, Latorre J, Soriano C, Verdejo BA, J. Am. Chem. Soc., 126(16), 5082 (2004)
  15. Comba P, Gahan LR, Hanson GR, Maeder M, Westphal M, Dalton Trans., 43, 3144 (2014)
  16. Massoud SS, Louka FR, Al-Hasan MA, Vicente R, Mautner FA, New. J. Chem, 39, 5944 (2015)
  17. Pavlishchuk VV, Addison AW, Inorg. Chim. Acta., 298, 97 (2000)
  18. Sheldrick GM, Program Library for Structure Solution, Molecular Graphics: Version 6.2, Madison, WI, Bruker AXS, 2000.
  19. Sheldrick GM, SADABS: Area-Detector Absorption Correction, University of Gottingen, Gottingen, Germany, 2001
  20. Spek AL, PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 2000.
  21. Salvatore RN, Smith RA, Nischwitza AK, Gavin T, Tetrahedron Lett., 46, 8931 (2005)
  22. (a) Lucas HR, Li L, Sarjeant AAN, Vance MA, Solomon EI, Karlin KD, J. Am. Chem. Soc., 131, 3230 (2009); (b) Maiti D, Sarjeant AAN, Karlin KD, J. Am. Chem. Soc., 129, 6720 (2007); (c) Dharmalingam S, Youn MH, Park KT, Kim HJ, Graceb AN, Jeong SK, Acta Cryst. C,73, 1024 (2017).
  23. Angamuthu R, Byers P, Lutz M, Spek AL, Bouwman E, Science, 327(5963), 313 (2010)
  24. Zhang CX, Kaderli S, Costas M, Kim E, Neuhold YM, Karlin KD, Zuberbuhler AD, Inorg. Chem., 42(6), 1807 (2003)
  25. Lee DH, Hatcher LYQ, Vance MA, Sarangi R, Milligan AE, Sarjeant AAN, Incarvito CD, Rheingold AL, Hodgson KO, Hedman B, Solomon EI, Karlin KD, Inorg. Chem., 46(15), 6056 (2007)