화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.32, No.1, 61-70, February, 2020
Secondary Dean flow characteristics of inelastic Bird-Carreau fluids in curved microchannels
E-mail:,
To effectively control the mixing of target materials inside microfluidic devices, the Dean flow features of generalized-Newtonian Bird-Carreau (BC) fluids in curved rectangular channels are theoretically investigated, as a passive technique. Governing equations coupled with the Cauchy momentum equation and the BC model are solved using the finite volume scheme with a semi-implicit method for pressure-linked equations-revised (SIMPLER) algorithm. The effects of the rheological parameters of BC model, such as viscosity ratio, power-law index, and relaxation time constant, on the Dean flow are systematically examined in a wide range of Dean numbers (Dn), (very low to O(102)). The entire flow characteristics of BC fluids in curved microchannels with increasing Dn are quantified using flow skewness, DnRef/DnMFS, and magnitude of vorticity, resulting in two main findings of a more outward-skewed streamwise velocity profile and a more enhanced secondary Dean vortex for non-Newtonian fluids in comparison to the Newtonian case at the same Dn.
  1. Ait-Kadi A, Carreau PJ, Chauveteau G, J. Rheol., 31, 537 (1987)
  2. Amini H, Lee W, Di Carlo D, Lab Chip, 14, 2739 (2014)
  3. Bayat P, Rezai P, Sci. Rep., 7, 13655 (2017)
  4. Berger SA, Talbot L, Yao LS, Annu. Rev. Fluid Mech., 15, 461 (1983)
  5. Bharti RP, Chhabra RP, Eswaran V, Can. J. Chem. Eng., 84(4), 406 (2006)
  6. Bird RB, Armstrong RC, Hassager O, Dynamics of Polymeric Liquids, John Wiley & Sons, New York 1987.
  7. Bossard F, El Kissi N, D'Aprea A, Alloin F, Sanchez JY, Dufresne A, Rheol. Acta, 49(5), 529 (2010)
  8. Chen H, Meiners JC, Appl. Phys. Lett., 84, 2193 (2004)
  9. Cheng KC, Lin RC, Ou JW, J. Fluids Eng., 98, 41 (1976)
  10. Cherry EM, Eaton JK, Phys. Fluids, 25, 073104 (2013)
  11. Chien SK, Yen TH, Yang YT, Chen CK, CMES-Comp. Model Eng., 29, 163 (2008)
  12. Cho CC, Chen CL, Chen CK, Electrophoresis, 33, 743 (2012)
  13. Chun MS, Ko MJ, J. Korean Phys. Soc., 61, 1108 (2012)
  14. Cruz DA, Coelho PM, Alves MA, J. Heat Transfer, 134, 091703 (2012)
  15. Culbertson CT, Jacobson SC, Ramsey JM, Anal. Chem., 70, 3781 (1998)
  16. De Vriend HJ, J. Fluid Mech., 107, 423 (1981)
  17. Dean WR, Philos. Mag., 4, 208 (1927)
  18. Di Carlo D, Lab Chip, 9, 3038 (2009)
  19. Ebagninin KW, Benchabane A, Bekkour K, J. Colloid Interface Sci., 336(1), 360 (2009)
  20. Eustice J, Proc. R. Soc. London Ser. A, 84, 107 (1910)
  21. Fan Y, Tanner RI, Phan-Thien N, J. Fluid Mech., 440, 327 (2001)
  22. Guan G, Wu L, Bhagat AAS, Li Z, Chen PCY, Chao S, Ong CJ, Han J, Sci. Rep., 3, 1475 (2013)
  23. Howell PB, Mott DR, Golden JP, Ligler FS, Lab Chip, 4, 663 (2004)
  24. Hsu CF, Patankar SV, AIChE J., 28, 610 (1982)
  25. Jarvas G, Guttman A, Trends. Biotechnol., 31, 696 (2013)
  26. Jung H, Chun MS, Chang MS, Analyst, 140, 1265 (2015)
  27. Koh CG, Kang X, Xie Y, Fei Z, Guan J, Yu B, Zhang X, Lee LJ, Mol. Pharm., 6, 1333 (2009)
  28. Lepchev D, Weihs D, J. Fluids Eng., 132, 071202 (2010)
  29. Martel JM, Toner M, Phys. Fluids, 24, 032001 (2012)
  30. McGrath J, Jimenez M, Bridle H, Lab Chip, 14, 4139 (2014)
  31. Nivedita N, Ligrani P, Papautsky I, Sci. Rep., 7, 44072 (2017)
  32. Ookawara S, Higashi R, Street D, Ogawa K, Chem. Eng. J., 101(1-3), 171 (2004)
  33. Patankar SV, 1980, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York 1980.
  34. Rothert A, Deo SK, Millner L, Puckett LG, Madou MJ, Daunert S, Anal. Biochem., 342, 11 (2005)
  35. Rowe M, J. Fluid Mech., 43, 771 (1970)
  36. Shen S, Kou L, Zhang X, Wang D, Niu Y, Wang J, Adv. Theory. Simul., 1, 170003 (2018)
  37. Snyder B, Lovely C, Phys. Fluids A, 2, 1808 (1990)
  38. Song H, Cai Z, Noh HM, Bennett DJ, Lab Chip, 10, 734 (2010)
  39. Tan WH, Takeuchi S, Proc. Natl. Acad. Sci. USA, 104, 1146 (2007)
  40. Thangam S, Hur N, J. Fluid Mech., 217, 421 (1990)
  41. Volpe A, Paie P, Ancona A, Osellame R, Lugara PM, Pascazio G, J. Phys. D-Appl. Phys., 50, 255601 (2017)
  42. Wyatt NB, Liberatore MW, J. Appl. Polym. Sci., 114(6), 4076 (2009)
  43. Yamada M, Nakashima M, Seki M, Anal. Chem., 76, 5465 (2004)
  44. Yoon DH, Ha JB, Bahk YK, Arakawa T, Shoji S, Go JS, Lab Chip, 9, 87 (2009)
  45. Yoon K, Jung HW, Chun MS, Rheol. Acta, 56(11), 915 (2017)
  46. Yun JH, Chun MS, Jung HW, Phys. Fluids, 22, 052004 (2010)
  47. Zhao C, Yang C, Adv. Colloid Interface Sci., 201-202, 94 (2013)