화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.3, 571-575, March, 2020
Facile synthesis of mesoporous Cr2O3 microspheres by spray pyrolysis and their photocatalytic activity: Effects of surfactant and pyrolysis temperature
E-mail:
Mesoporous Cr2O3 microspheres with improved pore structure were prepared by spray pyrolysis method. A precursor solution was nebulized into fine droplets containing chromium salt and cetyltrimethylammonium bromide (CTAB), which were then pyrolyzed to Cr2O3/Cx microspheres inside a tubular furnace, followed by post-heat treatment to eliminate the carbonaceous material. The produced Cr2O3 particles had a diameter of 0.5-1 μm and their textural properties could be tuned by adjusting CTAB amount and pyrolysis temperature. The synthesized Cr2O3 microspheres had the highest surface area and pore volume of 52m2 g-1 and 0.3 cm3 g-1, respectively, which surpass those of Cr2O3 prepared using a conventional method such as thermal decomposition, hydrothermal reduction or wet chemical synthesis. The photocatalytic degradation of methyl orange dye (MO) was tested on the prepared Cr2O3 particles. It was determined that the spray pyrolysis-derived Cr2O3 exhibited greater photocatalytic activity than that of commercial TiO2 and Cr2O3 particles prepared by the thermal decomposition of chromium salt.
  1. Adepu AK, Goskula S, Chirra S, Siliveri S, Gujjula SR, Venkatathri N, J. Porous Mater., 26, 1259 (2019)
  2. Ayyappan S, Ulagappan N, Rao CNR, J. Mater. Chem., 6, 1737 (1996)
  3. Bai B, Wang PP, Wu L, Yang L, Chen ZH, Mater. Chem. Phys., 114(1), 26 (2009)
  4. Bai YK, Zheng RT, Gu Q, Wang JJ, Wang BS, Cheng GA, Chen G, J. Mater. Chem. A., 2, 12770 (2014)
  5. Chen L, Song Z, Wang X, Prikhodko SV, Hu J, Kodambaka S, Richards R, ACS Appl. Mater. Interfaces, 1, 1931 (2009)
  6. Cho JS, Jung KY, Kang YC, Phys. Chem. Chem. Phys., 17, 1325 (2015)
  7. Cho YH, Ko YN, Kang YC, Kim ID, Lee JH, Sens. Actuators B-Chem., 195, 189 (2014)
  8. Choi JH, Yoo KS, Kim JS, Korean J. Chem. Eng., 35(12), 2480 (2018)
  9. Dhas NA, Koltypin Y, Gedanken A, Chem. Mater., 9, 3159 (1997)
  10. Gunnewiek RFK, Mendes CF, Kiminami RHGA, Mater. Lett., 129, 54 (2014)
  11. Li L, Yan ZF, Lu GQ, Zhu ZH, J. Phys. Chem. B, 110(1), 178 (2006)
  12. Lima MD, Bonadimann R, de Andrade MJ, Toniolo JC, Bergmann CP, J. European Ceram. Soc., 206, 1213 (2006)
  13. Liu H, Du X, Xing X, Wang G, Qiao SZ, Chem. Commun., 48, 865 (2012)
  14. Ma J, Ding J, Yu L, Li L, Kong Y, Komarneni S, Appl. Clay Sci., 107, 85 (2015)
  15. Ocana M, J. European Ceram. Soc., 21, 931 (2001)
  16. Park SW, Joo OS, Jung KD, Kim H, Han SH, Korean J. Chem. Eng., 17(6), 719 (2000)
  17. Pei Z, Gao X, Zhang Y, Lu X, Mater. Lett., 116, 215 (2014)
  18. Pei Z, Xu H, Zhang Y, J. Alloy. Compd., 468, L5 (2009)
  19. Pei Z, Zheng X, Li Z, J. Nanosci. Nanotechnol., 16, 4655 (2016)
  20. Pratap SR, Shyamsundar M, Shamshuddin SZM, J. Porous Mat., 25, 1265 (2018)
  21. Rafi-ud D, Xuanhui Q, Ping L, Zhang L, Qi W, Iqbal MZ, Rafique MY, Farooq MH, Islam-ud D, J. Phys. Chem. C., 116, 11924 (2012)
  22. Roy M, Ghosh S, Naskar MK, Mater. Chem. Phys., 159, 101 (2015)
  23. Sone BT, Manikandan E, Gurib-Fakim A, Maaza M, Green. Chem. Lett. Rev., 9, 85 (2016)
  24. Su J, Xue H, Gu M, Xia H, Pan F, Ceram. Int., 40, 15051 (2014)
  25. Subhan F, Aslam S, Yan Z, Khan M, Etim UJ, Naeem M, J. Porous Mater., 26, 1465 (2019)
  26. Tsai SC, Song YL, Tsai CS, Yang CC, Chiu WY, Lin HM, J. Mater. Sci., 39(11), 3647 (2004)
  27. Valdes-Solis T, Fuertes AB, Mater. Res. Bull., 41(12), 2187 (2006)
  28. Venugopal N, Kim WS, Sohn KY, Korean J. Chem. Eng., 36(9), 1536 (2019)
  29. Vo TK, Kim WS, Kim SS, Yoo KS, Kim J, Energy Conv. Manag., 158, 92 (2018)
  30. Vollath D, Szabo DV, Willis JO, Mater. Lett., 29, 271 (1996)
  31. Yeom CJ, Kim YH, Korean J. Chem. Eng., 35(2), 587 (2018)
  32. Zhang Y, Xu Y, Li T, Wang Y, Particuology, 10, 46 (2012)