화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.84, 260-268, April, 2020
Polymer additive-combusted thermoelectric buckypapers for three-dimensional stacked paper thermoelectric generator
E-mail:
The use of polymer additives is effective for the fabrication of homogeneous single-walled carbon nanotube (SWCNT) films. However, the polymer chains located on the surface of SWCNT bundles act as barriers for electrical transport between SWCNTs and the chemical doping of SWCNTs. In this study, the combustion process of freestanding SWCNT/polymer films for the effective removal of the polymer additive and thermoelectric applications were investigated. By introducing the combustion process, high-performance p-type and n-type thermoelectric buckypapers were fabricated. The combusted and FeCl3-doped buckypapers with excellent electrical conductivity can be used as electrode materials in thermoelectric generators. Furthermore, a paper-based thermoelectric generator three-dimensional stacked for efficient energy harvesting using the vertical temperature difference was demonstrated. The thermoelectric generator with a thermal contact area of 1.2 cm2 exhibited a maximum output power of 2.48 μW with a vertical temperature difference of 30 K.
  1. Bubnova O, Khan ZU, Malti A, Braun S, Fahlman M, Berggren M, Crispin X, Nat. Mater., 10(6), 429 (2011)
  2. Kim GH, Shao L, Zhang K, Pipe KP, Nat. Mater., 12(8), 719 (2013)
  3. Ju D, Kim D, Yook H, Han JW, Cho K, Adv. Funct. Mater., 29, 190559 (2019)
  4. Chabinyc M, Nat. Mater., 13(2), 119 (2014)
  5. Jung IH, Hong CT, Lee UH, Kang YH, Jang KS, Cho SY, Sci. Rep., 7, 44704 (2017)
  6. Avery AD, Zhou BH, Lee J, Lee ES, Miller EM, Ihly R, Wesenberg D, Mistry KS, Guillot SL, Zink BL, Kim YH, Blackburn JL, Ferguson AJ, Nat. Energy, 1, 16033 (2016)
  7. Kim JY, Mo JH, Kang YH, Cho SY, Jang KS, Nanoscale, 10, 19766 (2018)
  8. Blackburn JL, Ferguson AJ, Cho C, Grunlan JC, Adv. Mater., 30, 170438 (2018)
  9. Kim JY, Lee W, Kang YH, Cho SY, Jang KS, Carbon, 133, 293 (2018)
  10. Mo JH, Kim JY, Kang YH, Cho SY, Jang KS, ACS Sust. Chem. Eng., 6, 15970 (2018)
  11. Zhou W, Fan Q, Zhang Q, Cai L, Li K, Gu X, Yang F, Zhang N, Wang Y, Liu H, Zhou W, Xie S, Nat. Commun., 8, 14886 (2017)
  12. MacLeod BA, Stanton NJ, Gould IE, Wesenberg D, Ihly R, Owczarczyk JR, et al., Energy Envrion. Sci., 10, 2168 (2017)
  13. Yao Q, Wang Q, Wang L, Chen L, Energy Environ. Sci., 7, 3801 (2014)
  14. Kim D, Kim Y, Choi K, Grunlan JC, Yu C, ACS Nano, 4, 513 (2010)
  15. Yu C, Choi K, Yin L, Grunlan JC, ACS Nano, 5, 7885 (2011)
  16. Hong CT, Lee W, Kang YH, Yoo Y, Ryu J, Cho SY, Jang KS, J. Mater. Chem. A, 3, 12314 (2015)
  17. Hong CT, Kang YH, Ryu J, Cho SY, Jang KS, J. Mater. Chem. A, 3, 21428 (2015)
  18. Lee W, Hong CT, Kwon OH, Yoo Y, Kang YH, Lee JH, Cho SY, Jang KS, ACS Appl. Mater. Interfaces, 7, 6550 (2015)
  19. Prabhakar R, Hossain MS, Zheng W, Athikam PK, Zhang Y, Hsieh YY, Skafidas E, Wu Y, Shanov V, Bahk JH, ACS Appl. Energy Mater., 2, 2419 (2019)
  20. Mo JH, Kim KC, Jang KS, J. Ind. Eng. Chem., 80, 190 (2019)
  21. Shim M, Javey A, Kam NWS, Dai HJ, J. Am. Chem. Soc., 123(46), 11512 (2001)
  22. Yu C, Murali A, Choi K, Ryu Y, Energy Environ. Sci., 5, 9481 (2012)
  23. Ryu Y, Freeman D, Yu C, Carbon, 49, 4745 (2011)
  24. Liu X, Pichler T, Knupfer M, Fink J, Kataura H, Phys. Rev. B, 70, 205405 (2004)
  25. Choi J, Jung Y, Yang SJ, Oh JY, Oh J, Jo K, Son JG, Moon SE, Park CR, Kim H, ACS Nano, 11, 7608 (2017)