화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.4, 688-697, April, 2020
Simultaneous NO/SO2 removal by coconut shell char/CaO from calcium looping in a fluidized bed reactor
E-mail:
A simultaneous NOx/SO2 removal system using bio-char and CaO combined with calcium looping process for CO2 capture was proposed. The simultaneous NO/SO2 removal performance of coconut shell char/CaO experienced CO2 capture cycles was investigated in a fluidized bed reactor. The effects of reaction temperature, mass ratio of CaO to coconut shell coke, CaO particle size and number of CO2 capture cycles from calcium looping process were discussed. The NO removal efficiency of char is improved under the catalysis of CaO. The reaction temperature plays an important role in the simultaneous NO/SO2 removal. Coconut shell char/CaO achieve the highest NO and SO2 removal efficiencies at 825 °C, which are 98% and 100%, respectively. The mass ratio of CaO to coconut shell char of 60 : 100 is a good choice for the simultaneous NO/SO2 removal. Smaller CaO particle size contributes to higher NO and SO2 removal efficiencies of coconut shell char/CaO. The NO and SO2 removal efficiencies of coconut shell char and cycled CaO from calcium looping declined slightly with the number of CO2 capture cycles. In addition, the Ca-based materials balance in process of simultaneous NOx/SO2 removal combined with calcium looping is given. The novel simultaneous NO/SO2 removal method using bio-char and cycled CaO from calcium looping process appears promising.
  1. Manianglung C, Pacia RM, Ko YS, Korean J. Chem. Eng., 36(8), 1267 (2019)
  2. Kang D, Lee JW, Appl. Catal. B: Environ., 186, 41 (2016)
  3. Lim HS, Kang D, Lee JW, Appl. Catal. B: Environ., 202, 175 (2017)
  4. Khan AA, Halder G, Saha AK, Korean J. Chem. Eng., 36(7), 1090 (2019)
  5. Ma X, Li Y, Chi X, Zhang W, Wang Z, Korean J. Chem. Eng., 34(2), 580 (2017)
  6. Yoo KY, Park JS, Park MJ, Korean J. Chem. Eng., 33(4), 1153 (2016)
  7. Fan LS, Zeng L, Wang W, Luo S, Energy Environ. Sci., 5, 7254 (2012)
  8. Shimizu T, Hirama T, Hosoda H, Kitano K, Inagaki M, Tejima K, Chem. Eng. Res. Des., 77, 62 (2019)
  9. Valverde JM, Chem. Eng. J., 228, 1195 (2013)
  10. Li YJ, Ma XT, Wang WJ, Chi CY, Shi JW, Duan LB, Chem. Eng. J., 316, 438 (2017)
  11. Cormos CC, Energy, 78, 665 (2014)
  12. Chen H, Khalili N, Li J, Chem. Eng. J., 345, 321 (2018)
  13. Li X, Li W, Wang L, Chang X, Coal Chem. Indus., 46, 17 (2018)
  14. Li Y, Buchi S, Grace JR, Lim CJ, Energy Fuels, 19(5), 1927 (2005)
  15. Sun P, Grace JR, Lim CJ, Anthony EJ, Energy Fuels, 21(1), 163 (2007)
  16. Ryu HJ, Grace JR, Lim CJ, Energy Fuels, 20(4), 1621 (2006)
  17. Luo C, Zheng Y, Guo J, Feng B, Fuel, 127, 124 (2014)
  18. Gu Q, Hu X, Clean Coal Technol., 21, 77 (2015)
  19. He FQ, Deng XH, Chen M, Fuel, 199, 523 (2017)
  20. Zhang W, Lu C, Chen D, Deng W, Song Q, Feng Y, Gong W, Song J, Clean Coal Technol., 25, 45 (2019)
  21. Xue YD, Zhang Y, Zhang Y, Zheng SL, Zhang Y, Jin W, Chem. Eng. J., 325, 544 (2017)
  22. Wang B, Liu SY, Li FY, Fan ZP, Korean J. Chem. Eng., 34(3), 717 (2017)
  23. Sun S, Zhang J, Hu X, Qiu P, Qian J, Qin Y, Korean J. Chem. Eng., 26(2), 554 (2009)
  24. Zhao ZB, Qiu JS, Li W, Li BQ, Fuel, 82(8), 949 (2003)
  25. Guo F, Hecker WC, Symp. Combust., 27, 3085 (1998)
  26. Zhao ZB, Li W, Li BQ, Fuel, 81(11-12), 1559 (2002)
  27. Wang S, Lu J, Hu Z, Huang L, Huazhong Univ. Sci. Tech., 34, 21 (2006)
  28. Wang CA, Du YB, Che DF, Energy Fuels, 26(12), 7367 (2012)
  29. Wen Z, Wang Z, Zhou J, Zhou Z, Liu J, Cen K, Combust. Sci. Technol., 15, 505 (2009)
  30. Deshpande N, Calcium and iron oxide reactivity studies for chemical looping applications of clean energy conversion, Ph.D. Thesis, Columbus: Ohio State University (2015).
  31. Zhong BJ, Shi WW, Fu WB, Fuel Process. Technol., 79(2), 93 (2002)
  32. Dong L, Gao S, Song W, Xu G, Fuel Process. Technol., 88, 707 (2007)
  33. Wang X, Li YJ, Shi JW, Zhao JL, Wang ZY, Liu HT, Zhou XG, Fuel Process. Technol., 180, 75 (2018)
  34. Wang Y, Qin H, Deng F, Gong S, Liu R, Zheng X, Fang H, World Trop Agric. Inf., 491, 5 (2018)
  35. Zhong Z, Yu G, Mo W, Zhang C, Huang H, Li S, Gao M, Lu X, Zhang B, Zhu H, RSC Adv., 9, 10425 (2019)
  36. Wilk A, Wieclaw-Solny L, Tatarczuk A, Krotki A, Spietz T, Chwoła T, Korean J. Chem. Eng., 34(8), 2275 (2017)
  37. Cui M, Zhou J, Zhang X, Li T, Niu F, Clean Coal Technol., 25, 131 (2019)
  38. Nhan HK, Kwon M, Kim S, Park JH, J. Mech. Sci. Technol., 33, 2967 (2019)
  39. Damjohansen K, Hansen PF, Rasmussen S, Appl. Catal. B: Environ., 5(4), 283 (1995)
  40. Illan-Gomez MJ, Linares-Solano A, Radovic LR, Salinas-Martinez C, Energy Fuels, 36, 112 (1995)
  41. Ulusoy B, Wu H, Lin WG, Karlstrom O, Li SG, Song WL, Glarborg P, Dam-Johansen K, Fuel, 236, 297 (2019)
  42. Chen Y, Guo Z, Wang Z, J. Iron Steel Res., 21, 6 (2009)
  43. Ratcliffe CT, Pap G, Fuel, 59, 237 (1980)
  44. Ortiz C, Chacartegui R, Valverde JM, Alovisio A, Becerra JA, Energy Conv. Manag., 149, 815 (2017)
  45. Wang SQ, Liu MZ, Sun LL, Cheng WL, Korean J. Chem. Eng., 34(6), 1882 (2017)
  46. Yang Y, Zhang Y, Appl. Energ. Technol., 3230, 32 (2013)
  47. Borgwardt RH, Bruce KR, AIChE J., 32, 239 (1986)
  48. Guo F, Hecker WC, Symp. Combust., 26, 2251 (1996)
  49. Ma XT, Li YJ, Duan LB, Anthony E, Liu HT, Appl. Energy, 225, 402 (2018)
  50. Guo HX, Kou XC, Zhao YJ, Wang SP, Sun Q, Ma XB, Chem. Eng. J., 334, 237 (2018)
  51. Sun RY, Li YJ, Liu HL, Wu SM, Lu CM, Appl. Energy, 89(1), 368 (2012)
  52. Li YJ, Zhao CS, Chen HC, Ren QQ, Duan LB, Energy, 36(3), 1590 (2011)
  53. Duan L, Zhou W, Li H, Chen X, Zhao C, Korean J. Chem. Eng., 28(9), 1952 (2011)