Macromolecular Research, Vol.28, No.3, 241-248, March, 2020
Preparation of Poly(phenylene sulfide)/Nylon 6 Grafted Graphene Oxide Nanocomposites with Enhanced Mechanical and Thermal Properties
E-mail:
Poly(phenylene sulfide) (PPS) is an attractive polymer in engineering plastics because of its high mechanical strength and thermal stability. Herein, poly(phenylene sulfide)/nylon 6 grafted graphene oxide (PPS/NGO) nanocomposites were prepared by micro-compounding, where NGO is prepared via ring-opening polymerization of ε-caprolactam on the graphene oxide (GO), which has carboxylic acid groups that can act as an initiator. Since nylon 6 is known to be able to blend with commercial PPS, nylon 6 moiety in NGO can increase mechanical properties of PPS, especially by forming PPS/NGO nanocomposites with improved toughness. Moreover, graphene nanosheets can provide improved mechanical strength and thermal stability because of their mechanically reinforcing and thermal barrier effects. For example, if a PPS/NGO nanocomposite with 0.03 wt% of NGO was prepared, the tensile strength and elongation at break values increased by 32% and 30%, respectively, compared to neat PPS. Also, the thermal decomposition temperature for 5% weight loss increased from 481 to 488 °C, indicating the improved thermal stability. These improved properties can be attributed to the well-dispersed NGO in the PPS matrix, as confirmed by the morphological studies using SEM and EDS mapping.
- Luo W, Liu Q, Li Y, Zhou ST, Zou HW, Liang M, Compos. Part B: Eng., 91, 579 (2016)
- Rule M, Fagerburg DR, Watkins JJ, Lawrence PB, Markromol. Chem., Rapid Commun., 12, 221 (1991)
- Wang HY, Zhao JY, Zhu YZ, Meng Y, Zhu YJ, J. Colloid Interface Sci., 402, 253 (2013)
- Caglar B, Fischer P, Kauranen P, Karttunen M, Eisner P, J. Power Sources, 256, 88 (2014)
- Deng SL, Lin ZD, Xu BF, Qiu WP, Liang KY, Li W, J. Therm. Anal. Calorim., 118, 197 (2014)
- Cheng SZD, Wu ZQ, Wunderlich B, Macromolecules, 20, 2802 (1987)
- Gu JW, Guo YQ, Yang XT, Liang CB, Geng WC, Tang L, Li N, Zhang QY, Compos. Part A: Appl. Sci. Manuf., 95, 267 (2017)
- Xing J, Ni QQ, Deng BY, Liu QS, Compos. Sci. Technol., 134, 184 (2016)
- Zou H, Ning N, Su R, Zhang Q, Fu Q, J. Appl. Polym. Sci., 106(4), 2238 (2007)
- Choi J, Lim S, Kim J, Choe CR, Polymer, 38(17), 4401 (1997)
- Chen Z, Li T, Yang Y, Liu X, Lv R, Wear, 257, 696 (2004)
- Pham JQ, Mitchell CA, Bahr JL, Tour JM, Krishanamoorti R, Green PF, J. Polym. Sci. B: Polym. Phys., 41(24), 3339 (2003)
- Huskic M, Zigon M, Eur. Polym. J., 43, 4891 (2007)
- Gojny FH, Wichmann MHG, Kopke U, Fiedler B, Schulte K, Compos. Sci. Technol., 64, 2363 (2004)
- Wu C, Huang XY, Wang GL, Wu XF, Yang K, Li ST, Jiang PK, J. Mater. Chem., 22, 7010 (2012)
- Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science, 306, 666 (2004)
- Lim MY, Kim HJ, Baek SJ, Kim KY, Lee SS, Lee JC, Carbon, 77, 366 (2014)
- Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Carbon, 45, 1558 (2007)
- Kim K, Bae J, Lim MY, Heo P, Choi SW, Kwon HH, Lee JC, J. Membr. Sci., 525, 125 (2017)
- Potts JR, Dreyer DR, Bielawski CW, Ruoff RS, Polymer, 52(1), 5 (2011)
- Xing J, Deng B, Liu Q, High Perform. Polym., 30, 519 (2017)
- Chang CY, Ju SP, Chang JW, Huang SC, Yang HW, RSC Adv., 4, 26074 (2014)
- Kim HJ, Choi K, Baek Y, Kim DG, Shim J, Yoon J, Lee JC, ACS Appl. Mater. Interfaces, 6, 2819 (2014)
- Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS, Nano Lett., 9, 1593 (2009)
- Xu YF, Liu ZB, Zhang XL, Wang Y, Tian JG, Huang Y, Ma YF, Zhang XY, Chen YS, Adv. Mater., 21(12), 1275 (2009)
- Ko T, Kim K, Lim MY, Nam SY, Kim TH, Kim SK, Lee JC, J. Mater. Chem. A, 3, 20595 (2015)
- Lim MY, Shin H, Shin DM, Lee SS, Lee JC, Polymer, 84, 89 (2016)
- Liao WH, Yang SY, Wang JY, Tien HW, Hsiao ST, Wang YS, Li SM, Ma CC, Wu YF, ACS Appl. Mater. Interfaces, 5, 869 (2013)
- Mai KC, Zhang SC, Gao QF, Zeng HM, J. Appl. Polym. Sci., 78(9), 1579 (2000)
- Zhou SF, Zhang QX, Wu CQ, Huang J, Mater. Des., 44, 493 (2013)
- Xu Z, Gao C, Macromolecules, 43(16), 6716 (2010)
- Gao W, Alemany LB, Ci L, Ajayan PM, Nat. Chem., 1, 403 (2009)
- Gechele GB, Mattiussi A, Eur. Polym. J., 1, 47 (1965)
- Levchik SV, Camino G, Costa L, Levchik GF, Fire Mater., 19, 1 (1995)
- Kan LY, Xu Z, Gao C, Macromolecules, 44(3), 444 (2011)
- Chadwick RC, Khan U, Coleman JN, Adronov A, Small, 9, 552 (2013)
- Pham VH, Dang TT, Hur SH, Kim EJ, Chung JS, ACS Appl. Mater. Interfaces, 4, 2630 (2012)
- Liu Q, Luo W, Chen Y, Zou H, Liang M, High Perform. Polym., 29, 889 (2016)
- Bian J, Wang ZJ, Lin HJ, Zhou X, Xiao WQ, Zhao XW, Compos. Pt. A-Appl. Sci. Manuf., 97, 120 (2017)
- El Achaby M, Arrakhiz FE, Vaudreuil S, el Kacem Qaiss A, Bousmina M, Fassi-Fehri O, Polym. Compos., 33, 733 (2012)
- Lim MY, Oh J, Kim HJ, Kim KY, Lee SS, Lee JC, Eur. Polym. J., 69, 156 (2015)
- Perng LH, Polym. Degrad. Stabil., 69, 323 (2000)
- Alam J, Alam M, Raja M, Abduljaleel Z, Dass LA, Int. J. Mol. Sci., 15(11), 19924 (2014)
- Yang K, Huang X, Fang L, He J, Jiang P, Nanoscale, 6, 14740 (2014)
- Nairn JA, Polymer Matrix Composites, R. Talreja and J.-A. Manson, Eds., Elsevier Science, 2000.
- Akhtar S, White JL, Polym. Eng. Sci., 32, 690 (1992)
- Noel A, Faucheu J, Chenal JM, Viricelle JP, Bourgeat-Lami E, Polymer, 55, 5140 (2014)
- Nawaz K, Khan U, Ul-Haq N, May P, O'Neill A, Coleman JN, Carbon, 50, 4489 (2012)