Polymer(Korea), Vol.44, No.2, 163-169, March, 2020
실리콘 고무로 개질된 에폭시/클레이 나노콤포지트의 경화속도론 및 화학유변학
Cure Kinetics and Chemorheology of Silicone Rubber Modified Epoxy/Clay Nanocomposites
E-mail:
초록
실리콘 고무로 개질된 에폭시/클레이 나노콤포지트의 경화 거동을 미분주사열량계(DSC)와 진동 레오미터를 이용하여 연구하였다. 지환형 에폭시 수지, 아민기를 포함하는 실리콘 고무, 무수 경화제, 나노클레이의 반응을 통해 나노콤포지트를 제조하였다. 클레이 함량이 4 phr로 증가함에 따라 경화 속도는 증가하였고 반응열은 감소하였으며 젤화 시간은 감소하였다. 등온경화 실험의 결과는 개선된 Kamal 모델에 잘 부합하였다. 이에 개선된 Kamal 모델을 적용하여 본 시스템의 전체적인 경화특성을 모사할 수 있으리라 사료된다.
The curing behavior of silicone rubber modified epoxy/clay nanocomposites was studied using a differential scanning calorimeter (DSC) and an oscillatory rheometer. The nanocomposites were prepared from the reaction of cycloaliphatic epoxy resins, silicone rubber containing amine functional group, anhydride hardener and nano-clay. As the clay content increased until 4 phr, the curing reaction rate increased, the reaction heat decreased, and the gelation time decreased. The isothermal cure results were well matched with the modified Kamal’s model. Therefore, it is thought that the overall cure characteristics can be simulated by applying a modified Kamal’s model.
- Bagheri R, Marouf BT, Pearson RA, Polym. Rev., 49, 201 (2009)
- Gong LX, Zhao L, Tang LC, Liu HY, Mai YW, Compos. Sci. Technol., 121, 104 (2015)
- Zhou H, Xu S, Mater. Lett., 121, 238 (2014)
- Xu SA, Wang GT, Mai YW, J. Mater. Sci., 48(9), 3546 (2013)
- Rath SK, Chavan JG, Sasane S, Jagannath, Patri M, Samui AB, Chakraborty BC, Appl. Surf. Sci., 256(8), 2440 (2010)
- Prabu AA, Alagar M, Prog. Org. Coat., 49, 236 (2004)
- Hsieh TH, Kinloch AJ, Masania K, Lee JS, Taylor AC, Sprenger S, J. Mater. Sci., 45(5), 1193 (2010)
- Chrusciel JJ, Lesniak E, Prog. Polym. Sci, 41, 67 (2015)
- Li R, Zhang H, Zhou C, Zhang B, Chen Y, Zou H, Liang M, Appl. Polym. Sci., 134, 45272 (2017)
- Li B, He C, Lu W, Wang J, Zeng Y, Gao B, Prog. Org. Coat., 126, 178 (2019)
- Niu ZY, Liu GJ, Yin H, Zhou CC, Wu D, Yousaf B, Wang CM, Energy Conv. Manag., 124, 180 (2016)
- Zheng G, Polavarapu L, Liz-Marzan LM, Pastoriza-Santos I, Perez-Juste J, Chem. Commun., 51, 4572 (2015)
- Cha M, Shin K, Lee H, Moudrakovski IL, Ripmeester JA, Seo Y, Environ. Sci. Tehnol., 49, 1964 (2015)
- Bach QV, Chen WH, Bioresource Technol., 246, 88 (2017)
- Azizi K, Moraveji MK, Najafabadi HA, Bioresource Technol., 243, 481 (2017)
- Lin Y, Liao YF, Yu ZS, Fang SW, Lin YS, Fan YL, Peng XW, Ma XQ, Energy Conv. Manag., 118, 345 (2016)
- Hu JH, Shan JY, Zhao JQ, Tong Z, Thermochim. Acta, 632, 56 (2016)
- Xu J, Jiang Y, Zhang T, Dai Y, Yang D, Qiu F, Yu Z, Yang P, Prog. Org. Coat., 122, 10 (2018)
- Thanki JD, Parsania PH, J. Therm. Anal. Calorim., 130, 2145 (2017)
- Park J, Jana SC, Polymer, 45(22), 7673 (2004)
- Sahoo SK, Mohanty S, Nayak SK, Prog. Org. Coat., 88, 263 (2015)
- Xidas PI, Triantafyllidis KS, Eur. Polym. J., 46, 404 (2010)
- Kissinger HE, Anal. Chem., 29, 1702 (1957)
- Sheng X, Akinc M, Kessler MR, J. Therm. Anal. Calorim., 93, 77 (2008)
- Gheno G, Ganzerla R, Bortoluzzi M, Paganica R, Prog. Org. Coat., 78, 239 (2015)
- Kamal MR, Ryan ME, Polym. Eng. Sci., 20, 859 (1980)
- Rabearison N, Jochum C, Grandidier JC, J. Mater. Sci., 46(3), 787 (2011)
- Perrin FX, Nguyen TMH, Vernet JL, Eur. Polym. J., 43, 5107 (2007)
- Han CD, Lem KW, Polym. Eng. Sci., 24, 473 (1984)
- Cole KC, Hechler JJ, Noel D, Macromolecules, 24, 3098 (1991)
- Montserrat S, Andreu G, Cortes P, Calventus Y, Colomer P, Hutchinson JM, J. Appl. Polym. Sci., 61(10), 1663 (1996)
- Fava RA, Polymer, 9, 137 (1968)
- Cure behavior by dynamic mechanical analysis ASTM D4473.
- Teil H, Page SA, Michaud V, Manson JAE, J. Appl. Polym. Sci., 93(4), 1774 (2004)