화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.2, 115-124, April, 2020
바이오매스 기반 엔지니어링 플라스틱 연구 동향
Research Trend of Biomass-Derived Engineering Plastics
E-mail:, ,
초록
지속가능한 플라스틱 산업은 크게 사용 후에 물과 이산화탄소로 분해되어 환경에 악영향을 주지 않는 생분해성 플라스틱과 대기 중의 탄소자원으로 광합성된 바이오매스로부터 전환된 원료를 사용하여 탄소 중립을 실현하는 바이오매스기반 플라스틱으로 나누어진다. 그중 산업의 새로운 방향으로 바이오매스 기반 엔지니어링 플라스틱(EP) 및 천연 나노섬유를 이용한 강화 나노복합소재가 각광받고 있다. 이들 소재는 천연자원을 활용한다는 친환경성의 이점 외에도 석유계 플라스틱보다 뛰어난 차별화된 고기능성을 부여하여 고부가가치 플라스틱 시장에서의 경쟁력을 가진다. 대표적 바이오매스 기반 단량체인 isosorbide와 2,5-furandicarboxylic acid로부터 제조되는 폴리에스터, 폴리카보네이트 소재는 석유계 대비 높은 투명성, 기계적 특성, 열안정성, 기체 차단성 등으로 산업화의 선두에 있다. 더 나아가서 연속사용온도 150 ℃ 이상의 슈퍼 EP 소재에도 적용될 수 있는 가능성을 보였다. 나노셀룰로오스, 나노키틴 등의 자연계 나노섬유의 표면 친수성, 다관능기를 활용한 in situ 중합법을 이용하여 기존에 보고된 바 없는 기계적 물성 향상을 최소한의 나노필러 함량으로 이루어내었다. 본 총설에서 다루는 바이오매스 기반 tough-플라스틱은 환경이 요구하는 탄소 중립, 소비자가 요구하는 고기능성, 산업이 요구하는 접근성을 모두 만족함으로써 석유계 플라스틱을 대체해 나갈 것으로 기대한다.
Sustainable plastics can be mainly categorized into (1) biodegradable plastics decomposed into water and carbon dioxide after use, and (2) biomass-derived plastics possessing the carbon neutrality by utilizing raw materials converted from atmospheric carbon dioxide to biomass. Recently, biomass-derived engineering plastics (EP) and natural nanofiber-reinforced nanocomposites are emerging as a new direction of the industry. In addition to the eco-friendliness of natural resources, these materials are competitive over petroleum-based plastics in the high value-added plastics market. Polyesters and polycarbonates synthesized from isosorbide and 2,5-furandicarboxylic acid, which are representative biomass-derived monomers, are at the forefront of industrialization due to their higher transparency, mechanical properties, thermal stability, and gas barrier properties. Moreover, isosorbide has potential to be applied to super EP material with continuous service temperature over 150 ℃. In situ polymerization utilizing surface hydrophilicity and multi-functionality of natural nanofibers such as nanocellulose and nanochitin achieves remarkable improvements of mechanical properties with the minimal dose of nanofillers. Biomass-derived tough-plastics covered in this review are expected to replace petroleum-based plastics by satisfying the carbon neutrality required by the environment, the high functionality by the consumer, and the accessibility by the industry.
  1. Bioplastics facts and figures; https://docs.european-bioplastics.org/publications/EUBP_Facts_and_figures.pdf, Accessed Feb. 19, 2020.
  2. Ebnesajjad S, Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications, 1st ed., William Andrew, Oxford, UK (2013).
  3. Lee J, Pai C, Appl. Chem. Eng., 27(3), 245 (2016)
  4. Editorial, The future of plastic, Nat. Commun., 9, 2157 (2018).
  5. Feng X, East AJ, Hammond W, Jaffe M, Contemporary Science of Polymeric Materials, 3-27, American Chemical Society, Washington DC, USA (2010).
  6. Irshad M, Lee SW, Choi EJ, Kim JW, Appl. Chem. Eng., 30(3), 280 (2019)
  7. Roquette launches ‘world’s largest’ isosorbide production unit, Additives for Polymers, 2015, 8-9 (2015).
  8. Fenouillot F, Rousseau A, Colomines G, Saint-Loup R, Pascault JP, Prog. Polym. Sci., 35, 578 (2010)
  9. Sajid M, Zhao X, Liu D, Green Chem., 20, 5427 (2018)
  10. Fukuzumi H, Saito T, Wata T, Kumamoto Y, Isogai A, Biomacromolecules, 10(1), 162 (2009)
  11. Saito T, Kimura S, Nishiyama Y, Isogai A, Biomacromolecules, 8(8), 2485 (2007)
  12. Thakur MK, Thakur VK, Prasanth R, Nanocellulose Polymer Nanocomposites: Fundamentals and Applications, Scrivener, Beverly, MA, USA (2014).
  13. Oksman K, Aitomaki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S, Compos. Part A: Appl. Sci. Manuf., 83, 2 (2016)
  14. Sharma A, Thakur M, Bhattacharya M, Mandal T, Goswami S, Biotechnol. Rep., 21, e00316 (2019)
  15. Auras R, Lim LT, Selke SEM, Tsuji H, Synthesis, Structures, Properties, Processing, and Applications, 1st ed., John Wiley & Sons, Hoboken, New Jersey, USA (2011).
  16. Ryu MH, Park J, Oh DX, Hwang SY, Jeon H, Im SS, Jegal J, Polym. Degrad. Stabil., 142, 226 (2017)
  17. Dammer L, Carus M, Raschka A, Scholz L, Market Developments of and Opportunities for Biobased Products and Chemicals, nova-institute for Ecology and Innovation, Hurth, Germany (2013).
  18. Kaneka enhances its biodegradable plastic manufacturing capacity; https://www.kaneka.co.jp/en/service/news/nr20180824/, Accessed Feb. 19, 2020.
  19. Chen GQ, Chem. Soc. Rev., 38, 2434 (2009)
  20. Jian J, Xiangbin Z, Xianbo H, Adv. Ind. Eng. Polym. Res., 3, 19 (2020)
  21. Bai H, Deng S, Bai D, Zhang Q, Fu Q, Macromol. Rapid Commun., 38, 170045 (2017)
  22. Masutani K, Kobayashi K, Kimura Y, Lee CW, J. Polym. Res., 25, 74 (2018)
  23. Gu SJ, Yoon DS, Bang MS, Appl. Chem. Eng., 28(2), 230 (2017)
  24. New Bio-based Engineering Plastic DURABIO™; https://www.m-chemical.co.jp/en/products/departments/mcc/sustainable/product/1201026_7964.html, Accessed Feb 19, 2020.
  25. de Jong E, Dam MA, Sipos L, Gruter GJM, Biobased Monomers, Polymers, and Materials, 1-13, American Chemical Society, Washington DC, USA (2012).
  26. Burgess SK, Karvan O, Johnson JR, Kriegel RM, Koros WJ, Polymer, 55, 4748 (2014)
  27. Nguyen HTH, Qi P, Rostagno M, Feteha A, Miller SA, J. Mater. Chem. A, 6, 9298 (2018)
  28. PEF - the polymer for the future; https://www.avantium.com/wp-content/uploads/2019/11/Article-PEF-Planet-Insider-issue-09-2019-page-40.pdf, Accessed Feb 19, 2020.
  29. Poulopoulou N, Kasmi N, Bikiaris DN, Papageorgiou DG, Floudas G, Papageorgiou GZ, Macromol. Mater. Eng., 303, 180015 (2018)
  30. Alaerts L, Augustinus M, Van Acker K, Sustainability, 10, 1487 (2018)
  31. Kim HT, Kim JK, Cha HG, Kang MJ, Lee HS, Khang TU, Yun EJ, Lee DH, Song BK, Park SJ, Joo JC, Kim KH, ACS Sustain. Chem. Eng., 7, 19396 (2019)
  32. Pang J, Zheng M, Sun R, Wang A, Wang X, Zhang T, Green Chem., 18, 342 (2016)
  33. Kim T, Koo JM, Ryu MH, Jeon H, Kim SM, Park SA, Oh DX, Park J, Hwang SY, Polymer, 132, 122 (2017)
  34. Chatti S, Schwarz G, Kricheldorf HR, Macromolecules, 39(26), 9064 (2006)
  35. Yoon JH, Kim SM, Eom Y, Koo JM, Cho HW, Lee TJ, LeeKG, Park HJ, Kim YK, Yoo HJ, Hwang SY, Park J, Choi BG, ACS Appl. Mater. Interfaces, 11, 46165 (2019)
  36. Yoon JH, Kim SM, Park HJ, Kim YK, Oh DX, Choi HW, Lee KG, Hwang SY, Park J, Choi BG, Biosens. Bioelectron., 150, 111946 (2020)
  37. Park SA, Choi J, Ju S, Jegal J, Lee KM, Hwang SY, Oh DX, Park J, Polymer, 116, 153 (2017)
  38. Kind S, Neubauer S, Becker J, Yamamoto M, Volkert M, Abendroth GV, Zelder O, Wittmann C, Metab. Eng., 25, 113 (2014)
  39. Kim HY, Ryu MH, Kim DS, Song BK, Jegal J, Polym-Korea, 38, 714 (2014)
  40. Kim HT, Baritugo kA, Oh YH, Hyun SM, Khang TU, et al., ACS Sustain. Chem. Eng., 6, 5296 (2018)
  41. Arkema and bio-based products; https://www.arkema.com/en/arkema-group/innovation/bio-based-products/, Accessed Feb 19, 2020.
  42. Luo K, Wang Y, Yu J, Zhu J, Hu Z, RSC Adv., 6, 87013 (2016)
  43. Ji XD, Wang ZK, Yan JL, Wang Z, Polymer, 74, 38 (2015)
  44. Jasinska L, Villani M, Wu J, van Es D, Klop E, Rastogi S, Koning CE, Macromolecules, 44(9), 3458 (2011)
  45. Labadie JW, Hedrick JL, Ueda M, Step-Growth Polymers for High-Performance Materials, American Chemical Society, Washington DC, USA (1996).
  46. Park J, Seo M, Choi H, Kim SY, Polym. Chem., 2, 1174 (2011)
  47. Dhara MG, Banerjee S, Prog. Polym. Sci., 35, 1022 (2010)
  48. Park J, Kim J, Seo M, Lee J, Kim SY, Chem. Commun., 48, 10556 (2012)
  49. Abderrazak HB, Fildier A, Romdhane HB, Chatti S, Kricheldorf HR, Macromol. Chem. Phys., 214, 1423 (2013)
  50. Chatti S, Hani MA, Bornhorst K, Kricheldorf HR, High Perform. Polym., 21, 105 (2009)
  51. Park SA, Jeon H, Kim H, Shin SH, Choy S, Hwang DS, Koo JM, Jegal J, Hwang SY, Park J, Oh DX, Nat. Commun., 10, 2601 (2019)
  52. Park SA, Im C, Oh DX, Hwang SY, Jegal J, Kim JH, Chang YW, Jeon H, Park J, Molecules, 24, 2492 (2019)
  53. Njuguna J, Pielichowski K, Desai S, Polym. Advan. Technol., 19, 947 (2008)
  54. Hwang SY, Yoo ES, Im SS, Polym. J., 44, 1179 (2012)
  55. Koo JM, Kim H, Lee M, Park SA, Jeon H, Shin SH, Kim SM, Cha HG, Jegal J, Kim BS, Choi BG, Hwang SY, Oh DX, Park J, Macromolecules, 52(3), 923 (2019)
  56. Dasari A, Yu ZZ, Mai YW, Polymer Nanocomposites: Towards Multi-Functionality, 1st ed., Springer, London, UK (2016).
  57. Paul DR, Robeson LM, Polymer, 49(15), 3187 (2008)
  58. Hussain F, Hojjati M, Okamoto M, Gorga RE, J. Compos. Mater., 40, 1511 (2006)
  59. Sripaiboonkij P, Sripaiboonkij N, Phanprasit W, Jaakkola MS, Environ. Health, 8, 36 (2009)
  60. Zhong L, Peng X, Handbook of Composites from Renewable Materials, John Wiley & Sons, Hoboken, New Jersey, USA (2017).
  61. Hanif Z, Jeon H, Tran TH, Jegal J, Park SA, Kim SM, Park J, Hwang SY, Oh DX, J. Polym. Res., 25, 191 (2017)
  62. Kim T, Tran TH, Hwang SY, Park J, Oh DX, Kim BS, ACS Nano, 13, 3796 (2019)
  63. Nguyen HL, Hanif Z, Park SA, Choi BG, Tran TH, Hwang DS, Park J, Hwang SY, Oh DX, Polymers, 10, 501 (2018)
  64. Nguyen HL, Ju S, Hao LT, Tran TH, Cha HG, Cha YJ, Park J, Hwang SY, Yoon DK, Hwang DS, Oh DX, ChemSusChem, 12, 3236 (2019)
  65. Tran TH, Nguyen HL, Hwang DS, Lee JY, Cha HG, Koo jM, Hwang SY, Park J, Oh DX, Carbohydr. Polym., 205, 392 (2019)
  66. Yu HS, Park H, Tran TH , Hwang SY, Na K, Lee ES, Oh KT, Oh DX, Park J, Pharmaceutics, 11, 258 (2019)
  67. Tran TH, Nguyen HL, Hao LT, Kong H, Park JM, Jung SH, Cha HG, Lee JY, Kim H, Hwang SY, Park J, Oh DX, Int. J. Biol. Macromol., 125, 660 (2019)
  68. Arias A, Heuzey MC, Huneault MA, Ausias G, Bendahou A, Cellulose, 22, 483 (2015)
  69. Lin N, Chen Y, Hu F, Huang J, Cellulose, 22, 2629 (2015)
  70. Nicharat A, Sapkota J, Weder C, Foster EJ, J. Appl. Polym. Sci., 132, 42752 (2015)
  71. Kim T, Jeon H, Jegal j, Kim JH, Yang H, Park J, Oh DX, Hwang SY, RSC Adv., 8, 15389 (2018)
  72. Koo JM, Kang J, Shin SH, Jegal J, Cha HG, Choy S, Hakkarainen M, Park J, Oh DX, Hwang SY, Compos. Sci. Technol., 185, 107885 (2020)
  73. Park SA, Eom Y, Jeon H, Koo JM, Lee ES, Jegal J, Hwang SY, Oh EX, Park J, Green Chem., 21, 5212 (2019)
  74. Hao LT, Eom Y, Tran TH, Koo JM, Jegal J, Hwang SY, Oh DX, Park J, Nanoscale, 12, 2393 (2020)