화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.2, 187-192, April, 2020
(2S,3R)-3-하이드록시호모세린락톤의 입체선택적 합성 : 바이닐글라이신 OBO Ester 유도체의 입체선택적인 이중알콜화 반응
Stereoselective Synthesis of (2S,3R)-3-Hydroxyhomoserine Lactone via anti Selective Dihydroxylation of an OBO Group-Protected Vinyl Glycine Analog
E-mail:,
초록
(2S,3R)-3-hydroxyhomoserine lactone (HSL)은 생리학적 활성을 가지는 다양한 종류의 화합물을 합성하기 위한 중간체로 활용되어 왔다. 본 논문에서는 OBO ester로 보호된 바이닐글라이신 유도체에 이중알콜화 반응을 수행하여 효율적인 HSL 합성 결과를 보고하고자 한다. 바이닐글라이신의 비고리 conformation은 크기가 큰 OBO ester에 의해 조절되었으며 N-inside conformation을 통해 이중알콜화 반응이 진행됨으로써 높은 anti 선택성(> 10 : 1)을 얻을 수 있었다. 이러한 결과를 바탕으로 N-Cbz-L-serine을 출발물질로 사용하여 총 7단계 34%의 수율로 HSL을 합성할 수 있었다. 본 연구의 결과는 amino diol 구조를 가지는 다양한 생리활성 천연물들의 입체선택적인 합성에 유용하게 활용될 수 있을 것으로 기대된다.
(2S,3R)-3-hydroxyhomoserine lactone (HSL) has been used as a key intermediate for the synthesis of various biologically active compounds. In this study, we demonstrated an efficient synthesis of HSL via anti selective dihydroxylation of a protected vinyl glycine analog with an oxabicyclo[2.2.2]octyl orthoester (OBO) ester group. Because the acyclic conformation of the substrate was efficiently controlled by the bulky OBO ester group, a diastereoselectivity of > 10 : 1 was obtained in the dihydroxylation reaction without the use of a chiral reagent. By using this result, the target compound 1 can be obtained from commercially available N-Cbz-L-serine 2 in seven steps with an overall yeid of 34%. This result could be applied to the stereoselective synthesis of biologically active molecules containing a vicinal amino diol moiety.
  1. Ye CX, Melcamu YY, Li HH, Cheng JT, Zhang TT, Ruan YP, Zheng X, Lu X, Huang PQ, Nat. Commun., 9, 410 (2018)
  2. Heravi MM, Lashaki TB, Fattahi B, Zadsirjan V, RSC Adv., 8, 6634 (2018)
  3. Karjalainen OK, Koskinen AMP, Org. Biomol. Chem., 10, 4311 (2012)
  4. Jeon J, Shin N, Kim YG, Appl. Chem. Eng., 25, 437 (2014)
  5. Oh JS, Park DY, Song BS, Bae JG, Yoon SW, Kim YG, Tetrahedron Lett., 43, 7209 (2002)
  6. Oh JS, Jeon J, Park DY, Kim YG, Chem. Commun., 41, 770 (2005)
  7. Jeon J, Hong SK, Oh JS, Kim YG, J. Org. Chem., 71, 3310 (2006)
  8. Jeon J, Lee JH, Kim JW, Kim YG, Tetrahedron: Asymmetry, 18, 2448 (2007)
  9. Jeon J, Shin N, Lee JH, Kim YG, Appl. Chem. Eng., 25(4), 392 (2014)
  10. Jeon J, Shin M, Yoo JW, Oh JS, Bae jG, Jung SH, Kim YG, Tetrahedron Lett., 48, 1105 (2007)
  11. Jeon J, Kim SH, Lee JH, Kim YG, Bull. Korean Chem. Soc., 30, 1003 (2009)
  12. Blaskovich MA, Lajoie GA, J. Am. Chem. Soc., 115, 5021 (1993)
  13. Blaskovich MA, Evindar G, Rose NGW, Wilkinson s, Luo Y, Lajoie GA, J. Org. Chem., 63, 3631 (1998)
  14. Hansen DB, Wan X, Carroll PJ, Joullie MM, J. Org. Chem., 70, 3120 (2005)
  15. houk KN, Duh HY, Wu YD, Moses SR, J. Am. Chem. Soc., 108, 2754 (1986)
  16. Koh M, Ph. D. Dissertation, Seoul National University, Seoul, Republic of Korea (2009).
  17. Pirrung MC, Nunn DS, McPhail AT, Bioorg. Med. Chem. Lett., 3, 2095 (1993)
  18. Olsen JA, Severinsen R, Ramussen TB, Hentzer M, Givskov M, Nielsen J, Bioorg. Med. Chem. Lett., 12, 325 (2002)
  19. Ikunaka M, Matsumoto J, Fujima Y, Hirayama Y, Org. Process Res. Dev., 6, 49 (2002)
  20. Vassilev VP, Uchiyama T, Kajimoto T, Wong CH, Tetrahedron Lett., 28, 5063 (1995)