화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.2, 200-207, April, 2020
RuTi 촉매의 소성온도가 NH3-SCO 반응활성에 미치는 영향
The Effect of Calcination Temperature of RuTi Catalysts on the Reaction Activity of NH3-SCO
E-mail:
초록
본 연구에서는, NH3-SCO (selective catalytic oxidation) 반응에서 RuTi 촉매 제조 시 소성온도에 따른 영향을 확인하였다. RuTi 촉매는 습윤 함침법을 이용하여 제조되었고, 공기 분위기에서 400~600 ℃로 4 h 동안 소성되었다. 촉매는 RuTi x00로 표기되었으며, x00는 소성온도를 의미한다. XRD, TEM, H2-TPR 분석에 따르면, RuTi x00 촉매는 소성온도가 증가할수록 활성금속의 분산도가 감소하는 것을 나타내었다. XPS, NH3-TPD 분석을 통하여, 낮은 분산도를 갖는 촉매는 표면 흡착 산소 종(Oβ) 및 NH3 흡착량이 감소하는 특성을 나타내었다. 따라서 RuTi 400 촉매는 TiO2 표면에 활성금속이 가장 잘 분산되었으며, NH3 제거 효율이 가장 우수하였다.
In this study, the effect of calcination temperature on the production of RuTi catalyst in NH3-SCO (selective catalytic oxidation) was investigated. The RuTi catalyst was prepared using the wet impregnation method, and calcined at 400~600 ℃ for 4 h in air condition. The catalysts were named RuTi x00 where x00 means the calcination temperature. According to XRD (X-Ray diffraction), TEM (transmission electron microscope), H2-TPR (H2-temperature programmed reduction) analyses, RuTi x00 catalysts displayed that the dispersion of active metal decreased via increasing the calcination temperature. The catalysts with low dispersion showed a decrease in the surface adsorption oxygen species (Oβ) and NH3 adsorption amount via XPS, and NH3-TPD analyses. Therefore, the RuTi 400 catalyst was well dispersed in the active metal on TiO2 surface, and also, the NH3 removal efficiency was excellent.
  1. Wu Y, Gu B, Erisman JW, Reis S, Fang Y, Lu X, Zhang X, Environ. Pollut., 218, 86 (2016)
  2. Warner JX, Dickerson RR, Wei Z, Strow L, Wang Y, Liang Q, Geophys. Res. Lett., 44, 2875 (2017)
  3. Li PX, Zhang RD, Liu N, Royer S, Appl. Catal. B: Environ., 203, 174 (2017)
  4. Zhang XY, Wang H, Wang Z, Qu ZP, Appl. Surf. Sci., 447, 40 (2018)
  5. Hung CM, Powder Technol., 196(1), 56 (2009)
  6. Wang Z, Qu Z, Quan X, Li Z, Wang H, Fan R, Appl. Catal. B: Environ., 134-135, 153 (2013)
  7. Long RQ, Yang RT, J. Catal., 207(2), 158 (2002)
  8. Il’chenko NI, Golodets GI, J. Catal., 39, 57 (1975)
  9. Amores JM, Escribano VS, Ramis G, Busca G, Appl. Catal. B: Environ., 13(1), 45 (1997)
  10. Lee SM, Lee HH, Hong SC, Appl. Catal. B: Environ., 470, 189 (2014)
  11. Jiang MH, Wang BW, Yao YQ, Li ZH, Ma XB, Qin SD, Sun Q, Appl. Surf. Sci., 285, 267 (2013)
  12. Wang H, Ning P, Zhang QL, Liu X, Zhang TX, Hu J, Wang LY, J. Fuel Chem. Tech., 47, 215 (2019)
  13. Ma H, Schneider WF, ACS Catal., 9, 2407 (2019)
  14. Wang F, He G, Zhang B, Chen M, Chen X, Zhang C, He H, ACS Catal., 9, 1437 (2019)
  15. Cui XZ, Zhou J, Ye ZQ, Chen HR, Li L, Ruan ML, Shi JL, J. Catal., 270(2), 310 (2010)
  16. Sobczyk DP, de Jong AM, Hensen EJM, van Santen RA, J. Catal., 219(1), 156 (2003)
  17. Li YJ, Armor JN, Appl. Catal. B: Environ., 13(2), 131 (1997)
  18. Cui X, Chen L, Wang Y, Chen H, Zhao W, Li Y, Shi J, ACS Catal., 4, 2195 (2014)
  19. Qi GS, Yang RT, J. Catal., 217(2), 434 (2003)
  20. Wang CL, Hwangm WS, Chu HL, Lin HJ, Ko HH, Wang MC, Ceram. Int., 42, 13136 (2016)
  21. Aranda-Perez N, Ruiz MP, Echave J, Faria J, Appl. Catal. A: Gen., 531, 106 (2017)
  22. Carballo JMG, Finocchio E, Garcia S, Rojas S, Ojeda M, Busca G, Fierro JLG, Catal. Sci. Technol., 1, 1013 (2011)
  23. Li LD, Qu LL, Cheng J, Li JJ, Hao ZP, Appl. Catal. B: Environ., 88(1-2), 224 (2009)
  24. Ruan DB, Liu PT, Chiu YC, Kan KZ, Yu MC, Chien TC, Chen YH, Kuo PY, Sze SM, Thin Solid Films, 660, 885 (2018)