Applied Chemistry for Engineering, Vol.31, No.2, 200-207, April, 2020
RuTi 촉매의 소성온도가 NH3-SCO 반응활성에 미치는 영향
The Effect of Calcination Temperature of RuTi Catalysts on the Reaction Activity of NH3-SCO
E-mail:
초록
본 연구에서는, NH3-SCO (selective catalytic oxidation) 반응에서 RuTi 촉매 제조 시 소성온도에 따른 영향을 확인하였다. RuTi 촉매는 습윤 함침법을 이용하여 제조되었고, 공기 분위기에서 400~600 ℃로 4 h 동안 소성되었다. 촉매는 RuTi x00로 표기되었으며, x00는 소성온도를 의미한다. XRD, TEM, H2-TPR 분석에 따르면, RuTi x00 촉매는 소성온도가 증가할수록 활성금속의 분산도가 감소하는 것을 나타내었다. XPS, NH3-TPD 분석을 통하여, 낮은 분산도를 갖는 촉매는 표면 흡착 산소 종(Oβ) 및 NH3 흡착량이 감소하는 특성을 나타내었다. 따라서 RuTi 400 촉매는 TiO2 표면에 활성금속이 가장 잘 분산되었으며, NH3 제거 효율이 가장 우수하였다.
In this study, the effect of calcination temperature on the production of RuTi catalyst in NH3-SCO (selective catalytic oxidation) was investigated. The RuTi catalyst was prepared using the wet impregnation method, and calcined at 400~600 ℃ for 4 h in air condition. The catalysts were named RuTi x00 where x00 means the calcination temperature. According to XRD (X-Ray diffraction), TEM (transmission electron microscope), H2-TPR (H2-temperature programmed reduction) analyses, RuTi x00 catalysts displayed that the dispersion of active metal decreased via increasing the calcination temperature. The catalysts with low dispersion showed a decrease in the surface adsorption oxygen species (Oβ) and NH3 adsorption amount via XPS, and NH3-TPD analyses. Therefore, the RuTi 400 catalyst was well dispersed in the active metal on TiO2 surface, and also, the NH3 removal efficiency was excellent.
- Wu Y, Gu B, Erisman JW, Reis S, Fang Y, Lu X, Zhang X, Environ. Pollut., 218, 86 (2016)
- Warner JX, Dickerson RR, Wei Z, Strow L, Wang Y, Liang Q, Geophys. Res. Lett., 44, 2875 (2017)
- Li PX, Zhang RD, Liu N, Royer S, Appl. Catal. B: Environ., 203, 174 (2017)
- Zhang XY, Wang H, Wang Z, Qu ZP, Appl. Surf. Sci., 447, 40 (2018)
- Hung CM, Powder Technol., 196(1), 56 (2009)
- Wang Z, Qu Z, Quan X, Li Z, Wang H, Fan R, Appl. Catal. B: Environ., 134-135, 153 (2013)
- Long RQ, Yang RT, J. Catal., 207(2), 158 (2002)
- Il’chenko NI, Golodets GI, J. Catal., 39, 57 (1975)
- Amores JM, Escribano VS, Ramis G, Busca G, Appl. Catal. B: Environ., 13(1), 45 (1997)
- Lee SM, Lee HH, Hong SC, Appl. Catal. B: Environ., 470, 189 (2014)
- Jiang MH, Wang BW, Yao YQ, Li ZH, Ma XB, Qin SD, Sun Q, Appl. Surf. Sci., 285, 267 (2013)
- Wang H, Ning P, Zhang QL, Liu X, Zhang TX, Hu J, Wang LY, J. Fuel Chem. Tech., 47, 215 (2019)
- Ma H, Schneider WF, ACS Catal., 9, 2407 (2019)
- Wang F, He G, Zhang B, Chen M, Chen X, Zhang C, He H, ACS Catal., 9, 1437 (2019)
- Cui XZ, Zhou J, Ye ZQ, Chen HR, Li L, Ruan ML, Shi JL, J. Catal., 270(2), 310 (2010)
- Sobczyk DP, de Jong AM, Hensen EJM, van Santen RA, J. Catal., 219(1), 156 (2003)
- Li YJ, Armor JN, Appl. Catal. B: Environ., 13(2), 131 (1997)
- Cui X, Chen L, Wang Y, Chen H, Zhao W, Li Y, Shi J, ACS Catal., 4, 2195 (2014)
- Qi GS, Yang RT, J. Catal., 217(2), 434 (2003)
- Wang CL, Hwangm WS, Chu HL, Lin HJ, Ko HH, Wang MC, Ceram. Int., 42, 13136 (2016)
- Aranda-Perez N, Ruiz MP, Echave J, Faria J, Appl. Catal. A: Gen., 531, 106 (2017)
- Carballo JMG, Finocchio E, Garcia S, Rojas S, Ojeda M, Busca G, Fierro JLG, Catal. Sci. Technol., 1, 1013 (2011)
- Li LD, Qu LL, Cheng J, Li JJ, Hao ZP, Appl. Catal. B: Environ., 88(1-2), 224 (2009)
- Ruan DB, Liu PT, Chiu YC, Kan KZ, Yu MC, Chien TC, Chen YH, Kuo PY, Sze SM, Thin Solid Films, 660, 885 (2018)