화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.85, 130-140, May, 2020
Mathematical modeling of a methanol reactor by using different kinetic models
E-mail:
In this research, a mathematical model for an industrial methanol reactor is developed comparing different kinetic models: Graaf et al., Vanden Bussche and Froment, pseudo first order and pseudo zero order. Similar studies have not been carried out previously. The considered reactor is multi-tubular with a methanol productivity of 2061 ton/day. Comparing the results obtained by mathematical models with experimental data, it is evident that only the Vanden Bussche and Froment kinetic model describes the methanol industrial reactor better. Also, it results that for all kinetic models, the effectiveness factor is equal to 1: for industrial reactors at high pressure and low temperature limitation phenomena are not present (the calculated Weis-Prater parameter is equal to 0.03). A sensitivity analysis is developed to analyze the effect of recycling ratio, global heat exchange coefficient, temperature, pressure, tube diameter on carbon conversion and specific heat flux. By increasing the recycling ratio and temperature, carbon conversion decreases, while by increasing all parameters, excluding the recycling ratio, the exchanged heat decreases. Different feeds are also analyzed: coke oven gas allows the highest methanol production, while flue gas and hydrogen from water electrolysis ensure the lowest productivity.
  1. Santiago M, Barbera K, Ferreira C, Curulla-Ferre D, Kolb P, Perez-Ramirez J, Catal. Commun., 21, 63 (2012)
  2. Fiedler E, Grossmann G, Kersebohm DB, Weiss G, Witte C, Methanol, Ullmann’s Encyclopedia of Industrial Chemistry, 6th ed., Wiley-VCH GmbH, Weinheim, pp.611 2003.
  3. Bellotti D, Rivarolo M, Magistri L, Massardo A, J. CO2 Util., 21, 132 (2017)
  4. Li Z, Tsotsis TT, J. Membr. Sci., 570-571, 103 (2019)
  5. Olah GA, Goeppert A, Prakash GKS, Beyond Oil and Gas: The Methanol Economy, Wiley, Weinheim, Germany, 2006.
  6. Gonzalez-Aparicio I, Kapetaki Z, Tzimas E, Appl. Energy, 222, 216 (2018)
  7. Blug M, Leker J, Plass L, Gunther A, Methanol generation economics, Methanol: The Basic Chemical and Energy Feedstock of the Future, Springer, pp.603 2014.
  8. Balopi B, Agachi P, Danha, Procedia Manuf., 35, 367 (2019)
  9. Aasberg-Petersen K, Nielsen CS, Dybkjær I, Perregaard J, Large Scale Methanol Production from Natural Gas, Haldor Topsøe, Lyngby, Denmark, 2008.
  10. Hartig F, Keil FJ, Ind. Eng. Chem. Res., 32(3), 424 (1993)
  11. Riaz A, Zahedi G, Klemes JJ, J. Clean Prod., 57, 19 (2013)
  12. Abashar MEE, Al-Rabiah AA, Fuel Process. Technol., 177, 387 (2018)
  13. Lee WJ, Bordoloi A, Patel J, Bhateli T, Catalysis (2019) In press.
  14. Rezaie N, Jahanmiri A, Moghtaderi B, Rahimpour MR, Chem. Eng. Process., 44(8), 911 (2005)
  15. Montebelli A, Visconti CG, Groppi G, Tronconi E, Ferreira C, Kohler S, Catal. Today, 215, 176 (2013)
  16. Pontzen F, Liebner W, Gronemann V, Rothaemel M, Ahlers B, Catal. Today, 171(1), 242 (2011)
  17. Abrol S, Hilton CM, Comput. Chem. Eng., 40, 117 (2012)
  18. Luyben WL, Ind. Eng. Chem. Res., 49(13), 6150 (2010)
  19. Santangelo DLO, Ahon VRR, Costa ALH, Chem. Eng. Technol., 31(12), 1767 (2008)
  20. de Marıa R, Dıaz I, Rodrıguez M, Saiz A, Int. J. Chem. Reactor Eng., 11(1) (2013)
  21. Løvik I, University of Science and Technology Department of Chemical Engineering, Norwegian, 2001 Master Thesis.
  22. Manenti F, Cieri S, Restelli M, Chem. Eng. Sci., 66(2), 152 (2011)
  23. Manenti F, Leon-Garzona AR, Bozzano G, Chem. Eng. Trans., 35, 1243 (2013)
  24. Manenti F, Cieri S, Restelli M, Bozzano G, Comput. Chem. Eng., 48, 325 (2013)
  25. Sadeghi S, Vafajoo L, Kazemeini M, Fattahi M, APCBEE Procedia, 10, 84 (2014)
  26. Rahimpour MR, Moghtaderi B, Jahanmiri A, Rezaie N, Chem. Eng. Technol., 28(2), 226 (2005)
  27. Leonzio G, Zondervan E, Foscolo PU, Int. J. Hydrog. Energy, 44(16), 7915 (2019)
  28. Bakhtiary-Davijanya H, Hayera F, Phana XK, Myrstad R, Venvika HJ, Pfeiferc P, Holmen A, Catalyst (2019) In press.
  29. Kaiser M, Freund H, Chem. Eng. Sci., 206, 401 (2019)
  30. Samini F, Karimipourfard D, Rahimpour MR, Carbon Dioxide via Reverse Water Gas Shift Reaction in a Membrane Reactor, pp.44 140 (2018).
  31. Rahimpour MR, Behjati HE, Fuel Process. Technol., 90(2), 279 (2009)
  32. Rahimpour MR, Bayat M, Rahmani F, Chem. Eng. J., 157(2-3), 520 (2010)
  33. Bayat M, Rahimpour MR, Energy Syst., 4, 137 (2013)
  34. Alarifi A, Liu ZF, Erenay FS, Elkamel A, Croiset E, Ind. Eng. Chem. Res., 55(5), 1164 (2016)
  35. Graaf GH, Stamhuis EJ, Beenackers AACM, Chem. Eng. Sci., 43, 3185 (1988)
  36. den Bussche KM, Froment GF, J. Catalyst., 161, 1 (1996)
  37. Meyer J, Tan P, Apfelbacher A, Daschner R, Hornung A, Chem. Eng. Technol., 39(No. 2), 223 (2016)
  38. Nimkar SC, Mewada RK, Rosen MA, Int. J. Hydrog. Energy, 42(47), 28113 (2017)
  39. Fogler HS, Elements of Chemical Reaction Engineering, 4th ed., New Jersey, USA, Prentice Hall: Upper Saddle River, New Jersey, USA, 2004.
  40. Smith JM, Chemical Engineering Kinetics, Third ed., McGraw-Hill, New York, NY, 1983.
  41. Green DW, Perry RH, Perry’s Chemical Engineers’ Handbook, McGraw-Hill Professional Publishing, New York, NY, 2007.
  42. Manenti F, Garzon ARL, Ardebilli ZR, Pirola C, Appl. Therm. Eng., 70, 1228 (2014)
  43. Perez-Fortes M, Schoneberger JC, Boulamanti A, Tzimas E, Appl. Energy, 161, 718 (2016)
  44. Kiss AA, Pragt JJ, Vos HJ, Bargeman G, de Groot MT, Chem. Eng. J., 284, 260 (2016)
  45. Yusup S, Anh NP, Zabiri H, IJRRAS, 5(3), 213 (2010)
  46. Blumberg T, Morosuk T, Tsatsaronis G, Energy, 175, 730 (2019)
  47. Mivarkili A, Chahibakhsh S, Ebrahimzadehsarvestani M, Soroush E, Rahimpour MR, J. Taiwan Inst. Chem. Eng., 104, 40 (2019)
  48. Bøhn K, University of Science and Technology Department of Chemical Engineering, Norwegian, 2011 Master thesis.
  49. Lommerts BJ, Graaf GH, Beenackers AACM, Chem. Eng. Sci., 55(23), 5589 (2000)
  50. Jess A, Wasserscheid P, Chemical Technology: An Integral Textbook, Wiley-VCH, Weinheim, Germany, 2013.
  51. Lei K, Ma H, Zhang H, Ying W, Fang D, Pol. J. Chem. Technol., 17(1), 103 (2015)
  52. Park N, Park MJ, Ha KS, Lee YL, Jun KW, Fuel., 129, 163 (2014)
  53. Graaf GH, Sijtsema PJJM, Stamhuis EJ, Joosten GEH, Chem. Engine. Sci., 41(11), 2883 (1986)
  54. Rahman D, San Jose State University SJSU ScholarWorks, 2012.
  55. Van-Dal ES, Bouallou C, J. Clean Prod., 57, 38 (2013)
  56. Panahi PN, Mousavi SM, Niaei A, Farzi A, Salari D, Int. J. Sci. Eng. Res., 3(2), 162 (2012)
  57. Chen L, Jiang QZ, Song ZZ, Posarac D, Chem. Eng. Technol., 34(5), 817 (2011)
  58. Graaf GH, Scholtens H, Stamhuis EJ, Beenackers AACM, Chem. Engine. Sci., 45(4), 773 (1990)
  59. An X, Zuo YZ, Zhang Q, Wang JF, Chin. J. Chem. Eng., 17(1), 88 (2009)
  60. Al-Adwani HA, Kinetic Study of Methanol Synthesis in a Slurry Reactor Using a CuO/ZnO/AI203 Catalyst, Texas A&M University, 1992 Master Thesis.
  61. Yang RQ, Yu XC, Zhang Y, Li WZ, Tsubaki N, Fuel, 87(4-5), 443 (2008)
  62. dos Santos RO, de Sousa Santos L, Prata DM, J. Clean Prod., 186, 821 (2018)
  63. Vita A, Italiano C, Previtali D, Fabian C, Palella A, Freni F, Bozzano G, Pino L, Manenti F, Renew. Energy, 118, 673 (2018)
  64. Atsonios K, Panopoulos KD, Kakaras E, Int. J. Hydrog. Energy, 41(4), 2202 (2016)
  65. Lin H, Jin HG, Gao L, Zhang N, Energy, 74, 174 (2014)
  66. Spallina V, Motamedi G, Gallucci F, van Sint Annaland M, Int. J. Greenhouse Gas Control, 88, 71 (2019)
  67. Machado CFR, de Medeiros JL, Araujo OFQ, Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management Bali, Indonesia, January 7-9, 2014.
  68. Ott J, Gronemann V, Pontzen F, Fiedler E, Grossmann G, Kersebohm DB, Methanol, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012.
  69. Rahimpour MR, Bahri P, Kaljahi JAF, Jahanmiri A, Romagnoli A, Computers them. Engng 22 (Suppl) S675-678 (1998).