화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.85, 249-257, May, 2020
A cryopreservable cell-laden GelMa-based scaffold fabricated using a 3D printing process supplemented with an in situ photo-crosslinking
E-mail:
Scaffolds consisting of cylindrical struts are one of the high-potential tissue engineering materials because the highly porous structure can easily induce cell infiltration/migration and efficiently deliver nutrients to the cells. In addition, cryopreservable scaffolds have attracted much interest in tissue engineering because they can be prospective ready-to-use “living” biomaterials consisting of a patient’s own cells. In this study, we investigated a cryopreservable cell-printed scaffold consisting of microscale cylindrical struts. To fabricate the scaffold, we developed a 3D cell-printing system supplemented with microfluidic channels, a core-shell nozzle, UV treatment system, and low-temperature working plate. The scaffold consisted of a cell-laden collagen/dimethyl sulfoxide (DMSO) mixture in the core region and a methacrylate gelatin (GelMA)/DMSO mixture in the shell region. After cryopreservation, the preosteoblasts (MC3T3-E1) loaded in the scaffold showed reasonable cell viability (~85%). Moreover, no significant difference was observed in the cell proliferations and ALP activities of the cryopreserved scaffold and non-cryopreserved scaffold. Based on these results, we believe that the fabrication process can be one of the potential techniques for fabricating cryopreservable scaffolds consisting of cylindrical struts.
  1. Langer R, Vacanti J, Science, 260, 920 (1993)
  2. Bertassoni LE, Cardoso JC, Manoharan V, Cristino AL, Bhise NS, et al., Biofabrication, 6, 024105 (2014)
  3. Luo Y, Zhai D, Huan Z, Zhu H, Xia L, Chang J, Wu C, ACS Appl. Mater. Interfaces, 7, 24377 (2015)
  4. Gao Q, He Y, Fu JZ, Liu A, Ma L, Biomaterials, 61, 203 (2015)
  5. Zhang W, Feng C, Yang G, Li G, Ding X, Wang S, Dou Y, Zhang Z, Chang J, Wu C, Biomaterials, 135, 85 (2017)
  6. Liu C, Liu Y, Li S, Sun Y, Li Y, Jiang C, Hu Q, Biomater J, Tissue Eng., 7, 28 (2017)
  7. Zhang W, Wray LS, Rnjak-Kovacina J, Xu L, Zou D, Wang S, Zhang M, Dong J, Li G, Kaplan DL, Biomaterials, 56, 68 (2015)
  8. Lovelock JE, Biochim. Biophys. Acta., 10, 414 (1953)
  9. Brockbank KG, Wright GJ, Yao H, Greene ED, Chen ZZ, Schenke-Layland K, Ann. Thoracic Surg., 91, 1829 (2011)
  10. Cao Y, Zhao G, Panhwar F, Zhang X, Chen Z, Cheng L, Zang C, Liu F, Zhao C, Liu F, Zhao Y, He X, Adv. Mater. Technol., 4, 180028 (2019)
  11. Massie I, Selden C, Hodgson H, Fuller B, Gibbons S, Morris GJ, Tissue Eng. C: Methods, 20, 693 (2014)
  12. Zhou XH, Zhang D, Shi J, Wu YJ, Medicine, 95 (2016)
  13. Karlsson JO, Toner M, Biomaterials, 17, 243 (1996)
  14. Costa PF, Dias AF, Reis RL, Gomes ME, Tissue Eng. C: Methods, 18, 852 (2012)
  15. Cagol N, Bonani W, Maniglio D, Migliaresi C, Motta A, Tissue Eng. C: Methods, 24, 20 (2018)
  16. Popa EG, Rodrigues MT, Coutinho DF, Oliveira MB, Mano JF, Reis RL, Gomes ME, Soft Matter, 9, 875 (2013)
  17. Lee JY, Koo Y, Kim G, ACS Appl. Mater. Interfaces, 10, 9257 (2018)
  18. Ahn S, Lee H, Lee EJ, Kim G, J. Mater. Chem. B, 2, 2773 (2014)
  19. Loessner D, Meinert C, Kaemmerer E, Martine LC, Yue K, Levett PA, Klein TJ, Melcels FP, Khademhosseini A, Hutmacher DW, Nat. Protoc., 11, 727 (2016)
  20. Kale R, Bajaj A, J. Young Pharm., 2, 90 (2010)
  21. Fields R, 38] The Rapid Determination of Amino Groups with TNBS, Elsevier, pp.464 1972.
  22. Day JG, Stacey G, Cryopreservation and Freeze-Drying Protocols, Springer Science & Business Media, New Jersey, pp.39 2007.
  23. Elmoazzen HY, Poovadan A, Law GK, Elliott JA, McGann LE, Jomha NM, Cell Tissue Banking, 8, 125 (2007)
  24. Pegg D, Seminars Reprod. Med., 20, 005 (2002)
  25. McGann LE, Cryobiology, 16, 211 (1979)
  26. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A, Biomaterials, 31, 5536 (2010)
  27. Kim JW, Kim MJ, Ki CS, Kim HJ, Park YH, Int. J. Biol. Macromol., 105, 541 (2017)
  28. Van den Bulcke AI, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H, Biomacromolecules, 1(1), 31 (2000)
  29. Yin J, Yan M, Wang Y, Fu J, Suo H, A.C.S. Appl, Mater. Interfaces, 10, 6849 (2018)
  30. Gao T, Gillispie GJ, Copus JS, PR AK, Seol YJ, Atala A, Yoo JJ, Lee SJ, Biofabrication, 10, 034106 (2018)
  31. Mahanta N, Teow Y, Valiyaveettil S, Biomater. Sci., 1, 519 (2013)
  32. Yue K, Santiago GTD, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A, Biomaterials, 73, 254 (2015)
  33. McQueen A, Meilhoc E, Baily JE, Biotechnol. Lett., 9, 831 (1987)
  34. Nair K, Gandhi M, Khalil S, Yan KC, Marcolongo M, Barbee K, Sun W, Biotechnol. J., 4, 1168 (2009)
  35. Reakasame S, Boccaccini AR, Biomacromolecules, 19(1), 3 (2018)
  36. Utech S, Boccaccini AR, J. Mater. Sci., 51(1), 271 (2016)
  37. Anselme K, Biomaterials, 21, 667 (2000)
  38. Hutmancher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC, J. Biomed. Mater. Res., 55, 203 (2001)
  39. Yang F, Williams CG, Wang DA, Lee H, Manson PN, Elisseeff J, Biomaterials, 26, 5991 (2005)