Journal of Industrial and Engineering Chemistry, Vol.85, 249-257, May, 2020
A cryopreservable cell-laden GelMa-based scaffold fabricated using a 3D printing process supplemented with an in situ photo-crosslinking
E-mail:
Scaffolds consisting of cylindrical struts are one of the high-potential tissue engineering materials
because the highly porous structure can easily induce cell infiltration/migration and efficiently deliver nutrients to the cells. In addition, cryopreservable scaffolds have attracted much interest in tissue engineering because they can be prospective ready-to-use “living” biomaterials consisting of a patient’s own cells. In this study, we investigated a cryopreservable cell-printed scaffold consisting of microscale cylindrical struts. To fabricate the scaffold, we developed a 3D cell-printing system supplemented with microfluidic channels, a core-shell nozzle, UV treatment system, and low-temperature working plate. The scaffold consisted of a cell-laden collagen/dimethyl sulfoxide (DMSO) mixture in the core region and a methacrylate gelatin (GelMA)/DMSO mixture in the shell region. After cryopreservation, the preosteoblasts (MC3T3-E1) loaded in the scaffold showed reasonable cell viability (~85%). Moreover, no significant difference was observed in the cell proliferations and ALP activities of the cryopreserved scaffold and non-cryopreserved scaffold. Based on these results, we believe that the fabrication process can be one of the potential techniques for fabricating cryopreservable scaffolds consisting of cylindrical struts.
- Langer R, Vacanti J, Science, 260, 920 (1993)
- Bertassoni LE, Cardoso JC, Manoharan V, Cristino AL, Bhise NS, et al., Biofabrication, 6, 024105 (2014)
- Luo Y, Zhai D, Huan Z, Zhu H, Xia L, Chang J, Wu C, ACS Appl. Mater. Interfaces, 7, 24377 (2015)
- Gao Q, He Y, Fu JZ, Liu A, Ma L, Biomaterials, 61, 203 (2015)
- Zhang W, Feng C, Yang G, Li G, Ding X, Wang S, Dou Y, Zhang Z, Chang J, Wu C, Biomaterials, 135, 85 (2017)
- Liu C, Liu Y, Li S, Sun Y, Li Y, Jiang C, Hu Q, Biomater J, Tissue Eng., 7, 28 (2017)
- Zhang W, Wray LS, Rnjak-Kovacina J, Xu L, Zou D, Wang S, Zhang M, Dong J, Li G, Kaplan DL, Biomaterials, 56, 68 (2015)
- Lovelock JE, Biochim. Biophys. Acta., 10, 414 (1953)
- Brockbank KG, Wright GJ, Yao H, Greene ED, Chen ZZ, Schenke-Layland K, Ann. Thoracic Surg., 91, 1829 (2011)
- Cao Y, Zhao G, Panhwar F, Zhang X, Chen Z, Cheng L, Zang C, Liu F, Zhao C, Liu F, Zhao Y, He X, Adv. Mater. Technol., 4, 180028 (2019)
- Massie I, Selden C, Hodgson H, Fuller B, Gibbons S, Morris GJ, Tissue Eng. C: Methods, 20, 693 (2014)
- Zhou XH, Zhang D, Shi J, Wu YJ, Medicine, 95 (2016)
- Karlsson JO, Toner M, Biomaterials, 17, 243 (1996)
- Costa PF, Dias AF, Reis RL, Gomes ME, Tissue Eng. C: Methods, 18, 852 (2012)
- Cagol N, Bonani W, Maniglio D, Migliaresi C, Motta A, Tissue Eng. C: Methods, 24, 20 (2018)
- Popa EG, Rodrigues MT, Coutinho DF, Oliveira MB, Mano JF, Reis RL, Gomes ME, Soft Matter, 9, 875 (2013)
- Lee JY, Koo Y, Kim G, ACS Appl. Mater. Interfaces, 10, 9257 (2018)
- Ahn S, Lee H, Lee EJ, Kim G, J. Mater. Chem. B, 2, 2773 (2014)
- Loessner D, Meinert C, Kaemmerer E, Martine LC, Yue K, Levett PA, Klein TJ, Melcels FP, Khademhosseini A, Hutmacher DW, Nat. Protoc., 11, 727 (2016)
- Kale R, Bajaj A, J. Young Pharm., 2, 90 (2010)
- Fields R, 38] The Rapid Determination of Amino Groups with TNBS, Elsevier, pp.464 1972.
- Day JG, Stacey G, Cryopreservation and Freeze-Drying Protocols, Springer Science & Business Media, New Jersey, pp.39 2007.
- Elmoazzen HY, Poovadan A, Law GK, Elliott JA, McGann LE, Jomha NM, Cell Tissue Banking, 8, 125 (2007)
- Pegg D, Seminars Reprod. Med., 20, 005 (2002)
- McGann LE, Cryobiology, 16, 211 (1979)
- Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A, Biomaterials, 31, 5536 (2010)
- Kim JW, Kim MJ, Ki CS, Kim HJ, Park YH, Int. J. Biol. Macromol., 105, 541 (2017)
- Van den Bulcke AI, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H, Biomacromolecules, 1(1), 31 (2000)
- Yin J, Yan M, Wang Y, Fu J, Suo H, A.C.S. Appl, Mater. Interfaces, 10, 6849 (2018)
- Gao T, Gillispie GJ, Copus JS, PR AK, Seol YJ, Atala A, Yoo JJ, Lee SJ, Biofabrication, 10, 034106 (2018)
- Mahanta N, Teow Y, Valiyaveettil S, Biomater. Sci., 1, 519 (2013)
- Yue K, Santiago GTD, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A, Biomaterials, 73, 254 (2015)
- McQueen A, Meilhoc E, Baily JE, Biotechnol. Lett., 9, 831 (1987)
- Nair K, Gandhi M, Khalil S, Yan KC, Marcolongo M, Barbee K, Sun W, Biotechnol. J., 4, 1168 (2009)
- Reakasame S, Boccaccini AR, Biomacromolecules, 19(1), 3 (2018)
- Utech S, Boccaccini AR, J. Mater. Sci., 51(1), 271 (2016)
- Anselme K, Biomaterials, 21, 667 (2000)
- Hutmancher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC, J. Biomed. Mater. Res., 55, 203 (2001)
- Yang F, Williams CG, Wang DA, Lee H, Manson PN, Elisseeff J, Biomaterials, 26, 5991 (2005)