화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.30, No.4, 204-210, April, 2020
Citrate 농도에 따른 수용액 화학조 증착 ZnO 성장 및 ZnO 박막의 Cu(In,Ga)Se2 태양전지 응용
Effect of the Concentration of Citrate on the Growth of Aqueous Chemical Bath Deposited ZnO and Application of the Film to Cu(In,Ga)Se2 Solar Cells
E-mail:
ZnO thin films are of considerable interest because they can be customized by various coating technologies to have high electrical conductivity and high visible light transmittance. Therefore, ZnO thin films can be applied to various optoelectronic device applications such as transparent conducting thin films, solar cells and displays. In this study, ZnO rod and thin films are fabricated using aqueous chemical bath deposition (CBD), which is a low-cost method at low temperatures, and environmentally friendly. To investigate the structural, electrical and optical properties of ZnO for the presence of citrate ion, which can significantly affect crystal form of ZnO, various amounts of the citrate ion are added to the aqueous CBD ZnO reaction bath. As a result, ZnO crystals show a nanorod form without citrate, but a continuous thin film when citrate is above a certain concentration. In addition, as the citrate concentration increases, the electrical conductivity of the ZnO thin films increases, and is almost unchanged above a certain citrate concentration. Cu(In,Ga)Se2 (CIGS) solar cell substrates are used to evaluate whether aqueous CBD ZnO thin films can be applicable to real devices. The performance of aqueous CBD ZnO thin films shows performance similar to that of a sputter-deposited ZnO:Al thin film as top transparent electrodes of CIGS solar cells.
  1. Miyake M, Fukui H, Hirato T, Phys. Status Solidi A-Appl. Res., 209, 945 (2012)
  2. Minami T, Yamamoto T, Miyata T, Thin Solid Films, 366(1-2), 63 (2000)
  3. Pei ZL, Zhang XB, Zhang GP, Gong J, Sun C, Huang RF, Wen LS, Thin Solid Films, 497(1-2), 20 (2006)
  4. Musta V, Teixeira B, Fortunato E, Monteiro RCC, Vilarinho P, Surf. Coat. Technol., 180, 659 (2004)
  5. Minami T, Sato H, Nanto H, Takata S, Jpn. J. Appl. Phys., Part 2, 24, L781 (1985).
  6. Fragala ME, Malandrino G, Microelectron. J., 40, 381 (2009)
  7. Suzuki A, Matsushita T, Wada N, Sakamoto Y, Okuda M, Jpn. J. Appl. Phys., Part 2, 35, L56 (1996).
  8. Wu Y, Yan H, Huang M, Messer B, Song JH, Yand P, Chem. Eur. J., 8, 1260 (2002)
  9. Huang MH, Wu YY, Feick H, Tran N, Weber E, Yang PD, Adv. Mater., 13(2), 113 (2001)
  10. Lee CJ, Lee TJ, Lyu SC, Zhang Y, Ruh H, Lee HJ, Appl. Phys. Lett., 81, 3648 (2002)
  11. Guillemoles JF, Kronik L, Cahen D, Rau U, Jasenek A, Schock HW, J. Phys. Chem. B, 104(20), 4849 (2000)
  12. Hamada T, Ito A, Fujii E, Chu D, Kato K, Masuda Y, J. Cryst. Growth, 311(14), 3687 (2009)
  13. Hagendorfer H, Lienau K, Nishiwaki S, Fella CM, Kranz L, Uhl AR, Jaeger D, Luo L, Gretener C, Buecheler S, Romanyuk YE, Tiwari AN, Adv. Mater., 26(4), 632 (2014)
  14. Lee S, Cho KS, Song S, Kim K, Eo YJ, Yun JH, Gwak J, Chung CH, J. Vis. Exp., 149, e59909 (2019)
  15. Tian ZRR, Voigt JA, Liu J, McKenzie B, McDermott MJ, Rodriguez MA, Konishi H, Xu HF, Nat. Mater., 2(12), 821 (2003)
  16. Lu JG, Fujita S, Kawaharamura T, Nichinaka H, et al., J. Appl. Phys., 101, 083705 (2007)
  17. Chung CH, Li SH, Lei B, Yang W, Hou WW, Bob B, Yang Y, Chem. Mater., 23, 964 (2011)
  18. Chung CH, Lei B, Bob B, Li SH, Hou WW, Duan HS, Yang Y, Chem. Mater., 23, 4941 (2011)
  19. Chung CH, Song TB, Bob B, Zhu R, Duan HS, Yang Y, Adv. Mater., 24(40), 5499 (2012)
  20. Chung CH, Bob B, Lei B, Li SH, Hou WW, Yang Y, Sol. Energy Mater. Sol. Cells, 113, 148 (2013)
  21. Chung CH, Hong KH, Lee DK, Yun JH, Yang Y, Chem. Mater., 27, 7244 (2015)
  22. Chung CH, Bo B, Song TB, Yang Y, Sol. Energy Mater. Sol. Cells, 120, 642 (2014)
  23. Jang J, Lee JS, Hong KH, Lee DK, Song S, Kim K, Eo YJ, Yun JH, Chung CH, Sol. Energy Mater. Sol. Cells, 170, 60 (2017)
  24. Lee S, Lee JS, Jang J, Hong KH, Lee DK, Song S, Kin K, Eo YJ, Gwak J, Chung CH, Nano Energy, 53, 675 (2018)
  25. Lee S, Jang J, Cho KS, Oh YJ, Hong KH, Song S, Kim K, Eo YJ, Yun JH, Gwak J, Chung CH, Sol. Energy, 180, 519 (2019)
  26. Lee S, Jang J, Park T, Park YM, Park JS, et al., ACS Appl. Mater. Interfaces., 12, 6169 (2020)
  27. Chung CH, Phys. Rev. Appl., 12, 024060 (2019)