화학공학소재연구정보센터
Energy & Fuels, Vol.34, No.3, 3743-3754, 2020
Composition, Structure, and Formation Routes of Blocklike Ferrospheres Separated from Coal and Lignite Fly Ashes
The structure-composition relationship of blocklike ferrospheres (FSs) isolated from fly ash from the coal and lignite combustion has been studied systematically by scanning electron microscopy and energy dispersive X-ray spectroscopy. Groups of globules for which the gross composition of polished sections corresponds to the general equations for the relationship of the concentrations SiO2 = f(Al2O3) and CaO = f(SiO2) are highlighted from FSs of two series. It is shown that blocklike FSs are formed during the sequential transformation of dispersed products of thermal conversion of mineral precursor associates: pyrite, quartz, and Ca, Al-humates in the case of brown coal; and pyrite, siderite, quartz, and calcite in the case of coal. Anorthite is the aluminosilicate precursor of blocklike FSs of both series. The dependence CaO = f(SiO2) that reflects the influence of glass-forming components reveals six groups of FSs. An analysis of SEM images of polished globule sections demonstrates that an increase in the concentration of glass-forming components in all groups is accompanied by gradual changes in the structure of globules, from a large blocklike type to a fine crystalline type with a high glass-phase content. The size and shape of crystallites are controlled by the size of a local melt area where the total concentration of spinel-forming oxides exceeds 85 wt %. An increase in the glass-phase concentration and a decrease in the crystallite size in globules with FeO <= 46-50 wt % are explained by expansion of the segregation region in the FeO-Fe2O3-SiO2 system as the oxidation potential rises.