화학공학소재연구정보센터
Inorganic Chemistry, Vol.59, No.8, 5497-5508, 2020
Synthesis, Structures, and Photoluminescent Properties of Tricyanidonitridorhenium(V) Complexes with Bipyridine-Type Ligands
Tricyanidonitridorhenium(V) complexes with 2,2'-bipyridine (bpy) derivatives in which the 4 and 4' positions were substituted by X, [ReN(CN)(3)(X(2)bpy)](-) (X = NMe2, NH2, OMe, Me, Cl, and Br), were newly synthesized and characterized. The structures of the new complexes were determined by single-crystal X-ray analysis. UV-vis spectra of the complexes in dimethyl sulfoxide (DMSO) showed that the peak maximum wavelengths of rhenium-to-pi* bpy-type-ligand charge transfer were in the range of 474-542 nm. Cyclic voltammograms in n-(C4H9)(4)NPF6-DMSO showed one-electron oxidation and reduction waves corresponding to the Re(VI/V) and X(2)bpy(0/-) processes, respectively. The new complexes and [ReN(CN)(3)bpy](-) showed photoluminescence in the crystalline phase at 295 and 80 K and in DMSO at 295 K. The origin of the emission in DMSO was attributed to the triplet nature of the rhenium-to-pi* bpy-type-ligand charge-transfer transition. Density functional theory calculations showed that the highest occupied and lowest unoccupied molecular orbitals were primarily localized on the d(xy) orbital of the rhenium and pi* orbitals of the bpy-type ligand, respectively.