화학공학소재연구정보센터
Inorganic Chemistry, Vol.59, No.3, 2011-2023, 2020
Bis(phosphine)hydridorhodacarborane Derivatives of 1,1 '-Bis(ortho-carborane) and Their Catalysis of Alkene Isomerization and the Hydrosilylation of Acetophenone
Deprotonation of [7-(1'-closo-1',2'-C2B10H11)-nido-7,8-C2B9H11](-) and reaction with [Rh(PPh3)(3)Cl] results in isomerization of the metalated cage and the formation of [8-(1'-closo-1',2'-C2B10H11)-2-H-2,2-(PPh3)(2)-closo-2,1,8-RhC2B9H10] (1). Similarly, deprotonation/metalation of [8'-(7-nido-7,8-C2B9H11)-2'-(p-cymene)-closo-2',1',8'-RuC2B9H10](-) and [8'-(7-nido-7,8-C2B9H11)-2'-Cp*-closo-2',1',8'-CoC2B9H10](-) affords [8-{8'-2'-(p-cymene)-closo-2',1',8'-RuC2B9H10}-2-H-2,2-(PPh3)(2)-closo-2,1,8-RhC2B9H10] (2) and [8-(8'-2'-Cp*-closo-2',1',8'-CoC2B9H10)-2-H-2,2-(PPh3)(2)-closo-2,1,8-RhC2B9H10] (3), respectively, as diastereoisomeric mixtures. The performances of compounds 1-3 as catalysts in the isomerization of 1-hexene and in the hydrosilylation of acetophenone are compared with those of the known single-cage species [3-H-3,3-(PPh3)(2)-closo-3,1,2-RhC2B9H11] (I) and [2-H-2,2-(PPh3)(2)-closo-2,1,12-RhC2B9H11] (V), the last two compounds also being the subjects of (103)R13 NMR spectroscopic studies, the investigations of rhodacarboranes. In alkene isomerization all the 2,1,8- or 2,1,12-RhC2B9 species (1-3, V) outperform the 3,1,2-RhC2B9 compound I, while for hydrosilylation the single-cage compounds I and V are better catalysts than the double-cage species 1-3.