화학공학소재연구정보센터
International Journal of Control, Vol.93, No.4, 971-979, 2020
Neural network-based asymptotic tracking control of unknown nonlinear systems with continuous control command
This paper proposes a robust tracking controller for a class of nonlinear second-order systems with time-varying uncertainties. The controller is mainly based on the robust integral of the sign of the error (RISE) control approach to achieve an asymptotic stability result with a continuous control command in the presence of additive uncertainties. An adaptive feedforward neural network control term is blended with a new RISE controller to improve the system's transient performance. The proposed RISE controller is a modified version of the existing saturated RISE controller such that only sign of the derivative of the output is needed. The stability of the closed-loop system is well studied, where a local asymptotic stability is proven. The controller performance is validated through simulations on a two-degree-of-freedom lower limb robotic exoskeleton.