International Journal of Hydrogen Energy, Vol.45, No.15, 8369-8384, 2020
Model for calculating the temperature and pressure within the fracture during supercritical carbon dioxide fracturing
Supercritical carbon dioxide fracturing not only enhances fossil hydrogen production better than hydraulic fracturing, but also alleviates water consumption and storages some carbon dioxide in reservoirs. In this study, a numerical simulation model for calculating the temperature and pressure within a fracture during supercritical carbon dioxide fracturing was established based on rock mechanics, fluid mechanics, thermodynamics, and heat transfer. Moreover, the effects of impact of in-situ stress of reservoir, reservoir temperature, carbon dioxide temperature at the bottom of the well and injection rate on temperature and pressure in the fracture are analyzed based on this new model. The results show that the temperature and pressure of carbon dioxide in the fracture are constantly changing during the fracturing, due to the propagation of the fracture, which makes the temperature and pressure in the fracture unable to reach a steady state. The effect of supercritical carbon dioxide fracturing in reservoirs with higher temperature and lower in-situ stress is better, and higher injection temperatures and smaller injection rates should be chosen in order for carbon dioxide to quickly reach the supercritical state. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.