International Journal of Hydrogen Energy, Vol.45, No.15, 8794-8809, 2020
Modeling and numerical simulation of a 5 kg LaNi5-based hydrogen storage reactor with internal conical fins
Hydrogen absorption by similar to 5 kg LaNi5 in a metal hydride reactor is simulated. A cylindrical reactor (OD 88.9 mm, Sch- 40s, SS 316) with internal conical copper fins and cooling tubes (1/4 '', SS 316) carrying water at 1 m s(-1) and 293 K (inlet) is considered. Designs with 10, 13 and 19 equi-spaced fins and 2, 4 and 6 cooling tubes are explored. Hydrogen (15 atm) is supplied through a coaxial metal filter (OD 12 mm, SS 316). Conical fins offer enhanced heat transfer through higher surface area and funnelling effect for efficient loading of metal hydride powder. 19 fins + 6 tubes design requires 290 and 375 s for 80% and 90% hydrogen saturation level, respectively. The fins near the water inlet regions are more effective as the water temperature is lower in these regions. Trade-off exists between times taken for saturation and the mass of metal hydride. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.