화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.45, No.9, 5668-5686, 2020
Development and performance analysis of a new solar tower and high temperature steam electrolyzer hybrid integrated plant
In this article, an extensive thermodynamic performance assessment for the useful products from the solar tower and high-temperature steam electrolyzer assisted multi generation system is performed, and also its sustainability index is also investigated. The system under study is considered for multi-purposes such as power, heating, cooling, drying productions, and also hydrogen generation and liquefaction. In this combined plant occurs of seven sub-systems; the solar tower, gas turbine cycle, high temperature steam electrolyzer, dryer process, heat pump, and absorption cooling system with single effect. In addition, the energy and exergy performance, irreversibility and sustainability index of multigeneration system are examined according to several factors, such as environment temperature, gas turbine input pressure, solar radiation and pinch point temperature of HRSG. Results of thermodynamic and sustainability assessments show that the total energetic and exergetic efficiency of suggested paper are calculated as 60.14%, 58.37%, respectively. The solar tower sub-system has the highest irreversibility with 18775 kW among the multigeneration system constituents. Solar radiation and pinch point temperature of HRSG are the most critical determinants affecting the system energetic and exergetic performances, and also hydrogen production rate. In addition, it has been concluded that, the sustainability index of multigeneration suggested study has changed between 2.2 and 3.05. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.