화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.45, No.7, 4534-4544, 2020
Three-in-One: Opened Charge-transfer channel, positively shifted oxidation potential, and enhanced visible light response of g-C3N4 photocatalyst through K and S Co-doping
The insufficient oxidation capacity, high carrier recombination rate and limited sunlight absorption seriously suppress the photocatalytic activity of pure g-C3N4. Using state-of-the-art hybrid density functional theory, we report an efficient method to tackle all aforementioned issues of g-C3N4 by metal-nonmetal (S and K) co-doping here. We find the adsorption of K atom on hollow site causes dynamic strain of g-C3N4. The S + K co-doping not only shifts the band edges downwards to achieve a much large overpotential of ca. 0.76 V, but also significantly extends the visible-light absorption threshold of g-C3N4. More importantly, the newly established channel between neighboring heptazine units in the doped structure is highly favorable for the separation of charge carriers. Our results help the design of high-performance visible-light-responsive g-C3N4-based photocatalyst for solar water splitting. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.