화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.45, No.7, 5039-5054, 2020
Intensifying vehicular proton exchange membrane fuel cells for safer and durable, design and operation
The explosion in a proton exchange membrane fuel cell (PEMFC) powered forklift in Louisiana, USA in May 2018 and the resulting fatality highlights the need for the improved safety of this technology. Apart from the safety concerns, PEMFC durability has been an important issue towards its further commercialization. Both the safety and durability concerns associated with this technology can be attributed to the temporal degradation of its components. In this study, we have developed a mathematical model that relates the microscale PEMFC degradation to the probability of a macroscale explosion in a Fuel Cell Electric Vehicle (FCEV). Using the model and the inherent safety principle of intensification, it was observed that increasing the operating temperature of the PEMFC system can significantly improve both its safety and durability while intensifying membrane design parameters i.e. membrane thickness and membrane conductivity do not provide any significant improvements. A key inference from this study is that the durability (expressed in voltage loss) and safety (expressed in explosion probability) of a PEMFC system are not perfectly correlated. (C) 2019 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.