화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.567, 224-234, 2020
Spreading of biologically relevant liquids over the laser textured surfaces
Hypothesis: The distribution of biological objects upon the spreading of biologically relevant dispersions over laser textured surfaces is affected by the dispersion composition and substrate chemistry and roughness. Experiments: To examine the role of the substrate texture in biologically relevant liquid spreading, the dynamic behavior of droplets of water and dispersions of bacterial cells and viruses and dynamic behavior of droplet/air surface tension were addressed. A new procedure to simultaneously distinguish three different spreading fronts was developed. Findings: The study of spreading of water and the biologically relevant liquids over the laser textured substrate indicate the development of three spreading fronts associated with the movement of bulk droplet base, the flow along the microchannels, and the nanotexture impregnation. The anisotropy of spreading for all types of liquid fronts was found. Despite the expected difference in the Theological behavior of water and the biologically relevant liquids, the spreading of all tested liquids was successfully described by power-law fits. The droplet base spreading for all tested liquids followed the Tanner law. The advancing of water and dispersions in the microchannels along both fast and slow axes was described by Washburn type behavior. The impregnation of the nanotexture by water and biologically relevant liquids demonstrated universality in power fit description with an exponent n = 0.23. (C) 2020 Elsevier Inc. All rights reserved.