Journal of Materials Science, Vol.55, No.19, 8264-8284, 2020
Synthesis of polyorganophosphazenes and preparation of their polymersomes for reductive/acidic dual-responsive anticancer drugs release
Cancer cells have reductive and acidic environments as compared to the normal body cells. Development of reductive/acidic responsive polymersomes will play a major role in cancer therapy to trigger the release of the loaded drug. In our work, we synthesized three different reductive/acidic dual-responsive polymers, poly[(mPEG-SS-amino) (N,N-diisopropylethylenediamino)phosphazenes] (PPDPs) in different mole ratios of side groups. These PPDPs were characterized by H-1 NMR, P-31 NMR, FT-IR and GPC. After that, the PPDPs were allowed to self-assemble into drug-loaded polymersomes with high loading content and encapsulation efficiency of hydrophilic/hydrophobic anticancer drugs. The hydrophilic anticancer drug doxorubicin hydrochloride (DOX center dot HCl) and hydrophobic drug doxorubicin were used. These PPDPs-based polymersomes showed reductive/acidic stimuli-responsive release of anticancer drugs. Moreover, these polymersomes also exhibited suitable hydrodynamic diameters, which will facilitate the longtime circulation in bloodstream due to avoiding renal clearance and close contact to the tumor cells in vascular sections due to enhanced permeability and retention effect. Collectively, these developed polymersomes may provide an effective platform for anticancer drugs delivery.