Journal of Materials Science, Vol.55, No.16, 7084-7094, 2020
Superhydrophobic paper fabricated via nanostructured titanium dioxide-functionalized wood cellulose fibers
Herein, an eco-friendly and straightforward method was provided for the fabrication of superhydrophobic paper from native wood cellulose fibers via in situ hydrolysis of tetraethyl titanate(IV) without any chemical pretreatment. By simply adjusting the amount of acetic acid (HAc), the surface micro/nanomorphology could be well controlled. After papermaking and hexadecyltrimethoxysilane modification, superhydrophobic paper can be easily achieved with static water contact angle of 152.3 degrees (+/- 1.3 degrees). The paper also possessed good self-cleaning property against contamination and durability toward mechanical damages of finger wiping over 50 cycles as well as excellent oil/water separation, which expands its utility in various paper-based technologies. The whole procedure possesses the advantages of friendly raw material, mild reaction conditions and with no toxic modifier, which hold potential application in cellulose-based superhydrophobic material in large scale.