Journal of Physical Chemistry A, Vol.124, No.4, 613-617, 2020
Unraveling Dynamic Transitions in Time-Resolved Biomolecular Motions by A Dressed Diffusion Model
Recent experimental data reveal the complexity of diffusion dynamics beyond the scope of classical Brownian dynamics. The particles exhibit diverse diffusive motions from the anomalous toward classical diffusion over a wide range of temporal scales. Here a dressed diffusion model is developed to account for non-Brownian phenomena. By coupling the particle dynamics with a local field, the dressed diffusion model generalizes the Langevin equation through coupled damping kernels and generates the salient feature of time-dependent diffusion dynamics reported in the experimental measurements of biomolecules. The dressed diffusion model provides one quantitative aspect for future endeavors in this rapid-growing field.