Journal of Process Control, Vol.88, 43-53, 2020
Nash-based robust distributed model predictive control for large-scale systems
In this paper, a new robust distributed model predictive control (RDMPC) is proposed for large-scale systems with polytopic uncertainties. The time-varying system is first decomposed into several interconnected subsystems. Interactions between subsystems are obtained by a distributed Kalman filter, in which unknown parameters of the system are estimated using local measurements and measurements of neighboring subsystems that are available via a network. Quadratic boundedness is used to guarantee the stability of the closed-loop system. In the MPC algorithm, an output feedback-interaction feed-forward control input is computed by an LMI-based optimization problem that minimizes an upper bound on the worst case value of an infinite-horizon objective function. Then, an iterative Nash-based algorithm is presented to achieve the overall optimal solution of the whole system in partially distributed fashion. Finally, the proposed distributed MPC approach is applied to a load frequency control (LFC) problem of a multi-area power network to study the efficiency and applicability of the algorithm in comparison with the centralized, distributed and decentralized MPC schemes. (C) 2020 Elsevier Ltd. All rights reserved.
Keywords:Robust distributed MPC;Kalman filter;Nash optimization;Linear matrix inequality;Load-frequency control