Macromolecules, Vol.53, No.5, 1567-1572, 2020
Mesolytic Versus Homolytic Cleavage in Photochemical Nitroxide-Mediated Polymerization
Time-dependent density functional theory calculations have been performed to study the photocleavage reactions of chromophore-functionalized alkoxyamines in nitroxide-mediated photopolymerization. Two case studies were considered: azaphenalene derivatives and benzophenone-based alkoxyamines. For the azaphenalenes, we show that the expected homolysis pathway is actually inaccessible. Instead, these alkoxyamines exhibit low-lying n(N)pi* excited states that exhibit an electronic structure about the nitroxide moiety similar to that of the formally oxidized radical cation. As a result, the cleavage of these alkoxyamines can be described as mesolytic-like rather than homolytic. As with formally oxidized species, mesolytic cleavage can result in the production of either carbon-centered radicals or carbocations, with only the former resulting in radical polymerization. Here, the cleavage products are found to be dependent on the respective radical/cation stabilities of the monomer units of choice (styrene, ethyl propanoate, and ethyl isobutyrate). In contrast to the azaphenalenes, in the benzophenone-based alkoxyamines, conjugation between the nitroxide and chromophore moieties appears to facilitate homolysis because of the ideal alignment of singlet and triplet states of different symmetries.