Journal of the Electrochemical Society, Vol.143, No.7, 2211-2219, 1996
Molecular-Dynamics Studies of Lithium Injection in Model Cathode/Electrolyte Systems
Molecular dynamics simulations of lithium injection in lithium metasilicate-WO3, systems have been performed. Lithium ion penetration is more prevalent in amorphous WO3 in comparison to the crystalline form. Migration dynamics can be augmented through an increase in the simulation temperature or by decreasing the coulombic repulsion between the tungsten and lithium ions. For crystalline WO3, Li+ injection is dependent on the orientation of the crystal. Lithium penetration is more pronounced for the crystal with the (001) orientation than in the (110) oriented crystal, where there is only limited Li+ diffusion.
Keywords:TUNGSTEN-OXIDE FILMS;ELECTROCHROMIC PROPERTIES;THIN-FILMS;COMPUTER-SIMULATIONS;VITREOUS SILICA;MICROSTRUCTURE;SURFACE;WATER;INTERCALATION;ELECTROLYTE